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Abstract. The Medicare Shared Savings Program (MSSP) was created under the Patient
Protection and Affordable Care Act to control escalating Medicare spending by incen-
tivizing providers to deliver healthcare more efficiently. Medicare providers that enroll in
the MSSP earn bonus payments for reducing spending to below a risk-adjusted financial
benchmark that depends on the provider’s historical spending. To generate savings, a
provider must invest to improve efficiency, which is a cost that is absorbed entirely by the
provider under the current contract. This has proven to be challenging for the MSSP, with
amajority of participating providers unable to generate savings owing to the associated costs.
In this paper, we propose a predictive analytics approach to redesigning the MSSP contract
with the goal of better aligning incentives and improving financial outcomes from the MSSP.
We formulate the MSSP as a principal–agent model and propose an alternate contract that
includes a performance-based subsidy to partially reimburse the provider’s investment. We
prove the existence of a subsidy-based contract that dominates the current MSSP contract by
producing a strictly higher expected payoff for both Medicare and the provider. We then
propose an estimator based on inverse optimization for estimating the parameters of ourmodel.
Weuse a data set containing thefinancial performance of providers enrolled in theMSSP,which
together accounts for 7million beneficiaries andmore than $70 billion inMedicare spending.We
estimate that introducing performance-based subsidies to theMSSP can boostMedicare savings
by up to 40% without compromising provider participation in the MSSP. We also find that the
subsidy-based contract performswell in comparisonwith a fullyflexible nonparametric contract.
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Supplemental Material: Supplemental material is available at https://doi.org/10.1287/opre.2018.1821.
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1. Introduction
The United States spends more on healthcare than any
other high-income nation in the world, both on a per
capita basis and as a share of its gross domestic product
(GDP). In 2016, total healthcare spending in the United
States exceeded $3 trillion, equivalent to 17% of the U.S.
GDP (OECD 2016). Approximately 20% ($600 billion)
of U.S. healthcare spending is through Medicare, the
United States’ federally funded health insurance pro-
gram for seniors and other qualifying individuals (CMS
2016a). An additional 17% of total healthcare spending is
through Medicaid, which is targeted at low-income in-
dividuals and those with disabilities. Combined, gov-
ernment programs therefore account for 37% of all U.S.
healthcare spending. Despite enormous spending on
healthcare, the U.S. underperforms its international peers
on many indicators of health quality (Starfield 2000,

McGlynn et al. 2003), which suggests that high costsmay
be a consequence of inefficiencies in the healthcare sys-
tem (Wennberg et al. 2002, Garber and Skinner 2008,
Berwick and Hackbarth 2012). Moreover, although costs
are already high, total healthcare spending—including
Medicare—is projected to continue to climb at a rate
of 5% per year over the next decade and outpace GDP
growth by more than 1% (CMS 2016a).
The growing cost of healthcare presents a significant

challenge for Medicare. The issue is further complicated
by a misalignment of incentives between Medicare and
providers: although Medicare bears the cost of healthcare
delivery for its beneficiaries, providers may be dis-
incentivized from delivering efficient, high-quality care
under existing payment models (Rosenthal et al. 2004).
For example, under traditional fee-for-service payment—
whereby providers receive payments in proportion to
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the volume and intensity of services provided—it may
be profitable for a provider to overutilize diagnostic im-
aging (such as computed tomography scans) to generate
additional Medicare payments, even if doing so does not
necessarily improve patient outcomes (Hendee et al. 2010).
Owing to the potential impact on total Medicare spend-
ing, correcting adverse incentives in healthcare delivery
has become one of the central issues of healthcare reform
(Milgate and Cheng 2006, Miller 2009, Wilensky 2013).
As a consequence, Medicare payment models and pro-
vider incentive programs have recently received signif-
icant attention within the operations management com-
munity, with several studies focusing on analyzing and
improving the efficacy of specific Medicare programs
(Ata et al. 2012, Lee and Zenios 2012, Andritsos and Tang
2015, Gupta and Mehrotra 2015, Adida et al. 2016, Bastani
et al. 2016, Guo et al. 2016, Zhang et al. 2016a).

The Medicare Shared Savings Program (MSSP) is
a recent federal initiative administered by the Centers
for Medicare and Medicaid Services (CMS) that encour-
ages providers to cut costs by improving the efficiency
of healthcare delivery. The MSSP has attracted significant
attention in the health policy community owing to its
potential impact on total spending, and as of 2017, it
accounts for one-sixth of the Medicare population. How-
ever, the financial performance of providers enrolled in
the MSSP indicates mixed results. In this paper, we
propose an alternate contract for the MSSP and show
that our proposed contract can lead to improved out-
comes for bothMedicare and participating providers. In
the remainder of this section, we provide a brief over-
view of the MSSP and a summary of our contributions.

1.1. Overview: Medicare Shared Savings Program
The Medicare Shared Savings Program is a voluntary
program that offers providers bonus payments for re-
ducing the cost of providing care for Medicare bene-
ficiaries, subject to satisfying certain quality standards.
The goal of the MSSP is to correct the misalignment of
incentives between Medicare and providers by making
it financially viable for providers to improve the effi-
ciency of healthcare delivery. To participate in theMSSP,
a group of Medicare providers is required to form a
cooperative entity referred to as an Accountable Care
Organization (ACO). In contrast to the common practice
of disaggregated providers treating patients indepen-
dently, ACOs represent a shift toward an integrated care
model, wherein a group of Medicare providers coordi-
nates care for a well-defined beneficiary population, and
group members are held jointly responsible for the
quality of care delivered (Berwick 2011, Crosson 2011).
The main focus of the ACOmodel of healthcare delivery
is thus to improve the overall efficiency of providing
healthcare through better coordination (e.g., by avoiding
duplication of health services), with the aim of reducing
healthcare spending while maintaining a high standard

of care. As an example, Akira Health, Inc., is an ACO
based in northern California that consists of 31 inde-
pendent primary care providers (e.g., individual phy-
sicians or clinics), which together deliver care to 8,900
Medicare beneficiaries and account for $135 million in
Medicare spending (Akira Health, Inc. 2017).
The defining feature of theMSSP is the establishment

of financial benchmarks for each ACO, which are cal-
culated on the basis of the ACO’s historical spending
and are risk adjusted according to attributes of the
ACO’s beneficiary population (Federal Register 2011).
An ACO whose annual Medicare spending is less than
its financial benchmark is eligible for a shared savings
payment, which is a bonus payment made to the ACO
in addition to the usual Medicare fee-for-service pay-
ment. The shared savings payment is proportional to
the savings generated by the ACO (i.e., the difference
between the benchmark and actual spending) so as to
encourage the ACO to maximize savings. As of 2018,
the Shared Savings Program has enrolled 561 ACOs,
which together serve a total of 10.5 million Medicare
beneficiaries, equivalent to one-sixth of the total Medi-
care population (CMS 2016a).1

Despite significant interest from providers, theMSSP
faces two notable challenges. First, financial data re-
leased by CMS suggest that ACOs have struggled to
cut costs: of the 392 ACOs participating in the MSSP as
of 2015, only one-third generated enough savings to
qualify for a shared savings payment (CMS 2017a). As
a result, the reduction in total Medicare spending has
been modest. In 2015, the total savings across all ACOs
was approximately $430 million, which represents a
0.6% decrease in Medicare spending (CMS 2017a).
Second, the low success rate among ACOs has made
continued participation in the MSSP unattractive for
many providers. A recent survey found that two-thirds
of ACOs are uncertain whether they will continue par-
ticipating in the Shared Savings Program, with less
than 10% certain that theywill remain enrolled (National
Association of ACOs 2014). Because the success of the
MSSP depends on voluntary participation by ACOs
and a reduction in Medicare spending (Rosenthal et al.
2011), these challenges raise serious questions regarding
the sustainability of the MSSP in its current form. More-
over, a major barrier that ACOs face with respect to
cutting healthcare costs is the significant investment that
must be made to improve the efficiency of healthcare
delivery (Haywood and Kosel 2011). For example, an
ACOmay need to invest in new information technology
to better coordinate care for its patients (Moore et al.
2011) or invest to increase the quality of care delivered
so that costly readmissions are minimized (Anderson
and Steinberg 1984). ACOs thus face a delicate balancing
act: to cut costs and receive shared savings payments
from Medicare, they must also increase spending to
achieve the necessary efficiency gains.
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1.2. Outline and Contributions
In this paper, we take a predictive analytics approach
to redesigning the MSSP contract, with the goal of
addressing the challenges currently faced by the MSSP.
Specifically, we propose a simple and intuitive modi-
fication of the existing MSSP contract: a performance-
based subsidy for an ACO’s investment. The intention
of the subsidy is twofold: first, to encourage ACOs to
generate additional savings by offsetting the cost of
efficiency improvements and, second, to boost total
ACO payments so as to make the MSSPmore attractive
to current and prospective ACOs. Our analytical and
empirical results suggest that the proposed subsidy
scheme achieves both of these desirable outcomes.

We note here that a total overhaul of theMSSPwould
likely lead to the greatest improvement in Medicare
savings. However, our perspective in this paper is that
owing to the size of the program ($70 billion in Medicare
spending) and the associated institutional inertia behind
it, a straightforward adjustment to the existing contract
is more realistic and stands a greater chance of being
implemented in practice rather than a full redesign. For
this reason, we retain much of the structure of the
existing MSSP contract in our analysis and focus on
the impact of incorporating an investment subsidy
into the existing contract. For completeness, we also
assess the potential impact of a full redesign of the
MSSP contract and compare its performance with the
subsidy-based contract.

Our analysis unfolds in two parts. First, we place the
MSSP within a principal–agent framework and char-
acterize the optimal contract. In the model, the ACO
(agent) has the ability to make an investment to reduce
spending on healthcare delivery and, in turn, earns bonus
payments that depend on both the savings generated and
parameters of the MSSP contract. The space of feasible
contracts that Medicare may select from is defined by
twoparameters: a shared savings rate, which is the fraction
of savings that the ACO receives as bonus payment, and
a subsidy rate, which is the fraction of the ACO’s in-
vestment that is reimbursed by Medicare. The solution
to Medicare’s optimal contracting problem is not obvi-
ous. A generous contract may provide a strong incentive
for the ACO to reduce spending but will also increase
Medicare’s total payments to theACO. Conversely, if the
bonus payment offered to the ACO is too low, then the
ACO may be insufficiently incentivized to generate any
appreciable savings.

In the second part of our analysis, we design a new
contract guided by financial performance data from
392 ACOs currently enrolled in the MSSP. We propose
an estimator to infer parameters of the principal–agent
model from the ACOdata. In contrast to previous work
on data-driven incentive design, which uses approaches
such as linear or logistic regression (e.g., Lee and Zenios
2012, Yamin andGavious 2013), our estimation procedure

is in the spirit of inverse optimization, which refers to the
inference of optimization model parameters from noisy
solution data (Bertsimas et al. 2015, Aswani et al. 2018).
Our approach is also distinguished from previous papers
in that the key model primitive that we aim to estimate
is itself a probability distribution. Using the estimated
principal–agentmodel,we then solve for the optimalMSSP
contract, which we formulate as a pure-integer optimi-
zation problem. Finally, we estimate the potential im-
provement in savings due to the subsidy by simulating
ACOperformance under both the existing and proposed
contracts. Our main results are summarized as follows.

1.2.1. Characterization of the Optimal Contract. We
first prove that under reasonable conditions, introducing
a performance-based subsidy to the MSSP can increase
total Medicare savings, despite the additional payments
that must bemade to the ACO. Because the ACO always
benefits from subsidy payments, this result implies the
existence of a subsidy-based contract that dominates all
possible contracts within the current program. In other
words, we show that introducing a subsidy can boost
Medicare savings in addition to increasing ACO pay-
ments, making the MSSP more attractive to ACOs.

1.2.2. Estimate of Medicare Savings. We estimate that
under the proposed contract,Medicare savings andACO
payments may increase by 43% and 17%, respectively,
which supports the dominance result discussed above
and provides evidence in favor of incorporating ACO
investment subsidies into a revised MSSP contract. We
also consider a complete redesign of the MSSP contract
that replaces the shared-savings and subsidy compo-
nentswith a fullyflexible nonparametric contract. As one
would expect, we find that the nonparametric contract
improves on the subsidy-based contract with respect to
Medicare’s savings. However, we find that the subsidy-
based contract performs relatively well compared with
the nonparametric contract, which suggests that a large
share of the savings improvement associatedwith a full
redesign of the MSSPmight be attainable by subsidizing
ACO investments.

1.2.3. Impact of Financial Benchmarks. Our estimation
also reveals that ACOs with high benchmark expendi-
tures are more likely to be effective at generating savings
than ACOs with low benchmarks. On average, we find
that ACOs with benchmark expenditures of less than
$10,000 per beneficiarywere unable to generate savings
on a per-beneficiary basis, whereas ACOs with bench-
marks greater than $14,000 reduced spending by $260
per beneficiary. This disparity in ACO performance may
be explained by the fact that the financial benchmarks
are calculated on the basis of the ACO’s historical
spending. As a consequence, an ACO with historically
high spending may have relatively more “room for
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improvement” than an ACO that has historically been
cost efficient. Because ACO bonus payments increase in
their savings, our finding suggest that Medicare should
anticipate that ACOs with low benchmarks may drop
out of the MSSP.

The remainder of this paper is organized as follows.
In Section 2, we review related literature. In Section 3,
we formulate the principal–agent model for the MSSP,
provide an overview of the existing contract, and
propose our subsidy-based contract. In Section 4, we
formulate Medicare’s optimal contracting problem and
present our key analytical results. In Section 5, we con-
sider variants of the optimal contracting problem, in-
cluding the nonparametric contract. In Section 6, we
present an inverse-optimization-based estimator for the
principal–agent model and outline our empirical method.
In Section 7, we present results from the structural
estimation and discuss their policy implications with
respect to the MSSP. We conclude in Section 8.

2. Related Literature
Our paper builds on a recent and growing body of
work on healthcare contracts in the operations man-
agement literature. We also contribute to the health
policy literature on accountable care organizations and
the broader literature on incentive design.

2.1. Healthcare Contracts
Incentive problems in healthcare delivery have received
significant attention in the operations management lit-
erature recently, in part owing to the focus on healthcare
reform in the United States. A large share of this work
has focused on principal–agent settings where the prin-
cipal (e.g., Medicare) is required to design a payment
model for an agent (e.g., provider) that yields socially
beneficial outcomes, such as improvements to patient
health or a reduction in healthcare spending. One of
the first papers in the operations management liter-
ature to consider a healthcare contracting problem is
by So and Tang (2000), who consider a setting where the
principal reimburses an agent for drugs prescribed to
patients. The authors focus on analyzing the agent’s
response to changes in a reimbursement policy that is tied
to patient outcomes. Fuloria and Zenios (2001) consider
a general problem in which an agent determines the
intensity of treatment for a patient and the principal
reimburses the agent for the services provided. Jiang et al.
(2012) consider an optimal contracting problem in a gen-
eral healthcare setting where the agent’s decision is to
allocate outpatient service capacity to different groups
of patients, and the principal wishes to minimize service
cost subject to constraints on agent performance. A
common conclusion in all three of these papers is that
linking provider reimbursement to patient health can
lead to improved health outcomes. The contract we
consider in this paper is different in that it depends

primarily on the financial performance of the provider
instead of the quality of healthcare delivered.
Several previous works have analyzed specific Medi-

care programs. Ata et al. (2013) consider Medicare’s
payment policies for hospice care. They highlight
adverse incentives in the existing policies and propose
an alternative payment model that corrects the mis-
alignment of incentives. Gupta and Mehrotra (2015)
formulate a game theoretic model for the Bundled
Payments for Care Improvement Initiative, which is
a new payment model in which Medicare providers
receive a single payment for a collection of services
provided to a beneficiary. Adida et al. (2016) and Guo
et al. (2016) also analyze bundled payment models
and compare their performance with traditional fee-
for-service payment. Zhang et al. (2016a) propose a game
theoretic model to study the behavior of hospitals under
the recently created Hospital Readmissions Reduction
Program, which is a mandatory program that penalizes
hospitals that do not reduce readmissions below target
levels. Their main result is a set of conditions under
which a hospital would rather pay penalties than
reduce readmissions. Andritsos and Tang (2015) com-
pare the effect of different Medicare payment models
(e.g., fee-for-service versus performance-based payment)
on hospital readmissions in a setting where service is
coproduced by both the provider and the patient. Bastani
et al. (2016) propose a general principal–agent frame-
work for pay-for-performance contracts and examine
three Medicare programs as special instances. Jiang
et al. (2016) and Savva et al. (2016) also consider the
realignment of provider incentives in a more general
setting and focus on the role of competition in reducing
costs. To the best of our knowledge, the only existing
work to consider the MSSP is by Zhang et al. (2016b),
who analyze the impact of the MSSP on the use of
computed tomography. Our paper is different in that
we consider the impact of investment subsidies on the
financial performance of ACOs and use observational
data from the MSSP to estimate our model.
We are aware of two other papers that take a data-

driven approach to designing incentives in a healthcare
setting. The first is by Lee and Zenios (2012), who con-
sider the problem of designing a payment model for
Medicare’s End Stage Renal Disease Program. A key
methodological distinction with our work is that the
formulation of the agent problem in Lee and Zenios
(2012) lends itself naturally to the use of linear regression
for estimating the model parameters. By contrast, the
agent problem in our paper is a more general optimi-
zation problem and has no closed-form solution, which
makes the use of linear regression nonviable. Instead, we
take a maximum likelihood estimation approach, which
results in requiring us to solve an inverse optimization
problem (Aswani et al. 2018). A second distinction is that
Lee and Zenios (2012) consider a linear contract, whereas
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the current MSSP contract that we analyze is piecewise
linear and discontinuous in the agent’s output. The
second related work is by Yamin and Gavious (2013),
who consider incentives offered to patients to encourage
them to receive influenza vaccinations. The authors
formulate the vaccine problem within a game theo-
retic framework and use logistic regression to estimate
the size of the incentive required to optimally vaccinate
the population, using phone survey data. The context
in the vaccine problem is markedly different from
ours because the incentive is offered directly to pa-
tients rather than to healthcare providers, and the
payment is provided as a lump sum rather than being
a function of agent output or effort.

2.2. Health Policy
Although the MSSP is relatively recent (the first cohort
of ACOs enrolled in 2012), it has received significant
attention in the health policy literature owing its po-
tential impact on healthcare spending. However, to
date, quantitative analyses of ACO performance and
the MSSP have been limited. McWilliams et al. (2016)
analyze early ACO performance data and find that
ACOs achieve minimal savings in their first year,
suggesting a transition phase for ACOs once they enroll
in the MSSP. They also find that ACOs consisting of
independent primary care groups tend to save more
than those integrated with hospitals. The authors carry
out a similar analysis in McWilliams et al. (2013, 2015).
Eddy and Shah (2012) develop a simulation model for
ACO performance within the MSSP and find that the
existing rules of the MSSP offer little incentive to ACOs
to improve the quality of care delivered. Liu and Wu
(2014) perform a simulation study that considers ACOs
and patients as individual agents and focuses specifi-
cally on congential heart failure. There has also been
significant qualitative discussion around the rules of
ACO formation (Lieberman and Bertko 2011, Fisher
et al. 2012) and the MSSP benchmarking methodology
(Chernew et al. 2014, Douven et al. 2015). Our paper
contributes to this literature by analyzing the MSSP
from a modeling perspective and by being the first to
examine the potential impact of ACO subsidies.

2.3. Incentive Design
Our paper builds on a rich and extensive literature on
incentive design and principal–agent problems. For an
overview of foundational work in the economics lit-
erature, we refer the reader to work by Hölmstrom
(1979), Grossman and Hart (1983), and Hart and
Holmström (1986). An overview of principal–agent
problems is given by Gibbons (1998) and Laffont and
Martimort (2009). Incentive design problems have also
recently received significant attention in the operations
management literature. Plambeck and Zenios (2000)
propose a general framework for dynamic principal–

agent problems based on a Markov decision process.
Incentive problems have been considered in a wide
variety of contexts in addition to healthcare, including
software development (Whang 1992), finance (Grinblatt
and Titman 1989, Raghu et al. 2003), sales (Chen 2000,
DeHoratius and Raman 2007, Khanjari et al. 2013),
project management (Chen et al. 2015), manufacturing
(Balasubramanian and Bhardwaj 2004), and supply-
chain management (Khouja and Zhou 2010, Guajardo
et al. 2012, Lariviere 2015, Chen and Lee 2016). There
is also a growing literature on the use of subsidies by
a central planner in attaining socially desirable outcomes.
Most of this work has focused on the use of subsidies
to encourage product adoption, such as influenza vac-
cines (Chick et al. 2008, Arifoglu et al. 2012, Mamani
et al. 2013), malaria drugs (Taylor and Xiao 2014, Levi
et al. 2016), and renewable energy technologies (Ata et al.
2012; Cohen et al. 2015a, b; Chemama et al. 2019). We
consider subsidies in a slightly different context, where
they are used to offset the cost of agent effort rather
than to reduce the purchase cost of a product.

3. Shared Savings Model
We begin by developing the principal–agent model
for the MSSP, which we formulate as a single-period
sequential game between the CMS (“Medicare”) and a
single ACO. The ACO provides healthcare to a bene-
ficiary population at a cost that is entirely incurred by
Medicare. The interaction proceeds in four steps. First,
Medicare selects a contract that depends on the ACO’s
savings and investment. Second, the ACO observes
the contract and invests in efficiency improvements to
reduce spending. Third, the actual savings generated
by theACO is realized. Last,Medicare observes the actual
savings and investment and pays (or receives a penalty
from) the ACO according to the selected contract.

3.1. Preliminaries
The ACO is defined by two attributes: μ and θ. We
refer to μ as the ACO’s benchmark, which is known to
Medicare, and θ as the ACOs type, which represents the
ACO’s private information and is unknown to Medi-
care. The benchmark serves as the primary reference
point for determining whether the ACO has generated
savings (if spending is less than μ) or losses (if spending
is greater than μ). The benchmark is calculated on the
basis of the ACO’s historical spending in the years
before joining the MSSP and is inflation adjusted to
serve as an estimate of the cost of providing healthcare
to the beneficiary population (Federal Register 2011).
The type parameter θ governs the ACO’s ability to
generate savings. Let the interval Θ � [θ,θ̄] denote
a continuum of possible ACO types. To reflect un-
certainty in the ACO’s type, let θ be a random variable
supported on Θ, where F(·|μ) and f (·|μ) are the dis-
tribution and density, respectively, of an ACO with
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benchmark μ. We assume that F and f are known to
Medicare. The type distribution depends on the ACO’s
benchmark, meaning that the ACO’s ability to generate
savingsmay depend on its historicalMedicare spending.
Wewill often suppress dependence on μ in the notation.
A type θ ACO can reduce spending by x by investing
c(x, θ) into efficiency improvements, where x ∈ [0, x̄].
The upper bound x̄ is included for technical purposes
and is without loss of generality. In general, if θ is
large, we say the ACO is effective at generating savings
and is a high-typeACO; conversely, if θ is small, then the
ACO is ineffective at generating savings and is low-type
ACO. This notion is formalized in Assumption 1.

Assumption 1. Let the following assumptions hold:
(i) c(0, θ) � 0 for all θ,
(ii) c(x, θ) is strictly convex and increasing in x,
(iii) c(x, θ) and (∂/∂x)c(x, θ) are decreasing in θ, and

lim
θ→0

c(x, θ) � ∞ for any x.

The assumption that c(x, θ) is strictly convex and
increasing in x implies diminishing returns on invest-
ment because the marginal cost of generating an ad-
ditional unit of savings increases with x. The assumption
that c(x, θ) is decreasing in θ implies that high-type
ACOs are more efficient at generating savings than low-
type ACOs. Similarly, the assumption that (∂/∂x)c(x, θ)
is decreasing in θ implies that the rate at which the
return on investment diminishes is lower for high-type
ACOs, which is consistent with the notion that high-type
ACOs are more effective at generating savings. Examples
of functional forms that satisfy Assumption 1 are x2/θ
and (x/θ) log(x + 1). Because of variations in the precise
healthcare needs of the population, there may be uncer-
tainty in the exact cost of delivering care. We account for
this uncertainty through a random shock to the ACO’s
spending, denoted by ξ. Let G(·) and g(·) be the distri-
bution and density of ξ, respectively.We assume thatG(·)
and g(·) are known to both Medicare and the ACO. Next,
we impose the following conditions on the shock.

Assumption 2. Let the following assumptions hold:
(i) E[ξ] � 0, and E[ξ2] � σ2 <∞.
(ii) The shock density g is continuous, almost every-

where differentiable, unimodal, and symmetric around 0.
(iii) There exist constants ḡ, ḡ′ <∞, such that g(ξ) ≤ ḡ,

g′−(ξ) ≤ ḡ, and g′+(ξ) ≤ ḡ for all ξ, where g′−(ξ) and g′+(ξ)
are left and right derivatives of g, respectively.

Assumption 2 is fairly mild and admits a large class
of probability distributions, such as theGaussian, Laplace,
and logistic distributions. Statement (iii) simply means
that the density and its derivative are bounded and is
stated with respect to the left and right derivatives of g
to permit distributions that are not differentiable ev-
erywhere (e.g., the Laplace density). The shock dis-
tribution is independent of the ACO’s benchmark. This

assumption allows us to avoid overfitting by reducing
the number of parameters in our estimation procedure
(discussed in Section 6). We obtain a strong model fit
despite this simplifying assumption.
We can now define the ACO’s actual spending on

delivering healthcare, or the delivery cost, as D � μ −
x − ξ. It may be convenient to interpret D as demand
for healthcare that must be satisfied by the ACO. Be-
cause, in our setting, demand represents the healthcare
needs of the patient population, we model it as being
exogenous to costs. Because E[ξ] � 0, the expected
delivery cost if the ACO makes no investment (im-
plying x � 0 by Assumption 1) is given by E[D] � μ.
We can now define the savings generated by the ACO
as the difference between the benchmark and actual
delivery costs as y � μ −D. Because D � μ − x − ξ, we
can write the savings equivalently as

y � x + ξ.

Therefore, the actual savings generated by an ACO is
equal to its reduction in spending plus an exogenous
shock. Let ω(·|x) denote the density function for the
savings given the ACO’s action x. Note that the actual
savings y is random owing to the shock and that
E[y] � x. We also assume throughout that P[μ − x̄−
ξ< 0] � 0, meaning that the demand is always non-
negative. This assumption can be ensured by truncating
the distribution of the shock variable ξ (and holds
trivially in practice, given that healthcare costs cannot
be driven to 0). Next, we define the contract that de-
termines the ACO’s shared savings payment, which
depends on the realized savings, y.

3.2. Baseline Contract: Shared Savings
In the MSSP, an ACO enters a “one-sided” contract for
an initial agreement period (usually three years), after
which it is transitioned to a “two-sided” contract. The
one-sided contract is risk free for the ACO: it receives
payments from Medicare for generating savings but is
not penalized if spending exceeds the benchmark. The
one-sided contract depends on three parameters: the
shared savings rate α ∈ !, a minimum savings threshold
h, and a fixed savings cap Cu. The shared savings
payment received by the ACO in the one-sided contract
is then given by

r+(y, α) �
0, y ∈ −∞, h( ],
αy, y ∈ h,Cu( ],
αCu, y ∈ (Cu,∞).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

The shared savings rate α represents the fraction of
savings that the ACO receives as payment if the realized
savings y is positive. The threshold h is the minimum
savings required for the ACO to receive a payment from
Medicare. The minimum savings threshold accounts for
natural variation in healthcare costs by ensuring that any
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observed savings are “real” (i.e., due to ACO effort and
not chance; Federal Register 2011). The savings cap Cu

reduces the risk to Medicare due to the shock and the
information assymmetry by protecting Medicare from
making an excessively large shared savings payment to
the ACO.

In the two-sided contract, both savings and losses are
shared withMedicare. In addition to receiving a shared
savings payment for generating positive savings, the
ACO pays a penalty of (1 − α)y to Medicare if y< −h,
that is, if the excess spending above the benchmark is
greater than the threshold h. Similar to the one-sided
case, the maximum penalty that can be paid by the
ACO is capped at (1 − α)C�. Writing the penalty terms
as negative payments, the payment received by the
ACO in the two-sided contract is then given by

r(y, α) �

(1 − α)C�, y ∈ −∞,C�( ],
(1 − α)y, y ∈ C�,−h( ],
0, y ∈ (−h, h],
αy, y ∈ h,Cu( ],
αCu, y ∈ (Cu,∞).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

Figure 1 shows a schematic of the one- and two-sided
contracts of the MSSP. We largely focus on the two-
sided contract in this paper because it is the intended
long-term contract of the MSSP. The one-sided contract
is most relevant in Section 6 because the financial data
that we use for estimation correspond to ACO per-
formance under the one-sided contract.

3.3. Proposed Contract: Shared Savings +
Performance-Based Subsidy

The MSSP in its current form is entirely performance
based, in that it rewards the ACO for generating savings
but is otherwise agnostic to the ACO’s investment. The
presence of the random shock under this paymentmodel

is risky for the ACO because it may be penalized for
exceeding the benchmark despite investing in effi-
ciency improvements. Here we define a new contract
that partially mitigates the ACO’s risk by providing
a subsidy for the investment in addition to the the existing
shared savings payment. In this sense, our proposed
contract is both effort based and performance based.
Further, as discussed in Section 1, our inclusion of a
subsidy component in the MSSP contract is related to
evidence that suggests that the investments required
by ACOs to improve efficiency can be a barrier to the
generation of savings (CMS 2016c). Moreover, our ap-
proach of contracting on both the ACO’s action and its
performance is inspired by a well-established body of
literature that suggests that contracting on both action
and outcome can improve outcomes (Harris and Raviv
1979; Hölmstrom 1979; Shavell 1979a, b). As we discuss
later in this section, the key consequence of the pro-
posed contract is that under reasonable conditions, it
can dominate the existing contract by generating
a higher payoff for both Medicare and the ACO. Under
the proposed contract, Medicare observes the ACO’s
investment and provides a subsidy proportional to the
investment, in addition to the shared savings payment.
Let β ∈ @ be the subsidy rate selected by Medicare. The
subsidy payment is then given by

s(y, β) � 0, y ∈ −∞, h( ],
βc(x, θ), y ∈ (h,∞).

{
(3)

Similar to the shared savings payment, the subsidy
payment is also performance based, in the sense that
the ACO only receives it if the savings is positive and
exceeds the minimum savings threshold h. Note that
the subsidy payment βc(x, θ) depends on the private
information θ, which is a priori unknown to Medicare.
In line with standard mechanism design theory, in

Figure 1. Shared Savings Payment Functions Under One-Sided and Two-Sided Contracts
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Section 4.2 we formulate Medicare’s optimal con-
tracting problem in amanner that incentivizes ACOs to
truthfully report their type θ, which enables Medicare
to contract directly on the ACO’s investment.

We also highlight here that the subsidy scheme
presented in this paper is different from the ACO In-
vestment Model (AIM) that was recently created by the
CMS (CMS 2016c). The most significant difference is
that the subsidy payments offered to ACOs through the
AIM are later deducted from shared savings payments,
which effectively makes the AIM a loan program.
We instead consider an entirely separate incentive that
exists in addition to the shared savings payment. Fur-
ther, the AIM is targeted at a subset of ACOs that meet
a well-defined criterion (e.g., those that are in rural areas
and excludes hospitals), whereas we consider a more
general program that can apply to any ACO.

3.4. Discussion of Modeling Assumptions
Before analyzing Medicare’s contracting problem, we
first discuss some of the key assumptions and limita-
tions of our model.

3.4.1. Quality. One might reasonably expect that an
ACO could decrease the quality of healthcare delivered
(e.g., by cutting services) as a way to reduce spending
and generate bonus payments within the MSSP. How-
ever, we assume throughout our analysis that quality of
care is fixed and that the ACO only decides on the size
of the investment. In other words, our model does not
permit the ACO to decrease quality of care to generate
savings. This assumption is supported by ACO perfor-
mance data and the existing regulations of the MSSP.
Data released by the CMS show that quality has actually
improved under theMSSP—for example, the average ACO
quality score increased by approximately 15% from 2014
to 2015 (CMS 2016b). Moreover, the regulations of the
MSSP require Medicare to verify that any savings gen-
erated by an ACO are not due to quality reductions.
Medicare upholds quality through close monitoring of
ACOs (e.g., to ensure that theydonot avoid at-risk patients
or underuse healthcare services; CMS 2016d), and failure
to meet quality standards or comply with Medicare
monitoringmay jeopardize an ACO’s participation in the
MSSP (Federal Register 2011). As a consequence, ACOs
have neither the incentive nor the ability to use quality as
a lever to generate shared savingspayments.We therefore
focus our analysis on the ACO’s investment behavior.

3.4.2. Benchmark Independence and ACO Size. In our
model, theACO’s optimal savings x(θ) depends explicitly
on α, β, and θ but does not depend on the benchmark
μ when θ is held fixed. To capture the effect of the
ACO benchmark on the savings generated, we allow
the distribution over the parameter θ to depend on
the ACO’s benchmark in our empirical analysis in

Section 6. We also do not explicitly incorporate ACO
size (i.e., number of assigned beneficiaries) into the
model and instead perform our analysis at the benefi-
ciary level. This normalization does not change the an-
alytical results presented in this section but is useful for
simplifying the estimation in Section 6. A cursory look
at the data suggests a weak relationship between ACO
size and savings (a correlation coefficient of ρ � 0.08),
which supports this normalization. Although we nor-
malize for beneficiaries for estimation purposes, we
explicitly incorporate ACO size when estimating ACO
performance under the proposed contract in Section 6.

3.4.3. Single ACO. Although the MSSP includes many
participatingACOs, for our analytical results, we consider
the interaction between Medicare and a single ACO. This
is because an ACO’s payment depends only its own
savings, benchmark, and investment and does not
depend on the performance of other ACOs. Moreover,
ACOs are prohibited by legislation from colluding or
sharing information with each other (Federal Register
2011). As a consequence, the key insights can be ob-
tained by focusing on the contracting problem between
Medicare and one ACO.

3.4.4. Single Period. In practice, the financial bench-
marks for ACOs are updated annually, on the basis of
the ACO’s most recent three years of spending and the
growth rate in national healthcare spending. The MSSP
might therefore be viewed as a multiperiod problem
with dynamically updating spending benchmarks. How-
ever, because our aim in this paper is to analyze the
potential impact of investment subsidies, it suffices to
restrict our attention to a single-period model. We note
here that additional insights may be gained by consid-
ering a multiperiod model for the MSSP. We take a first
step toward this extension in Section EC.4 of the online
supplemental material.

4. Model Analysis
In this section, we consider the ACO’s investment be-
havior and Medicare’s optimal contracting problem
under the existing and proposed MSSP contracts. In
Section 4.1, we present the ACO’s investment problem.
In Section 4.2, we present Medicare’s contracting prob-
lem and analytical results regarding the optimal contract
structure. In Section 4.3, we consider a variant of the
optimal contracting problem whereby ACO partici-
pation is determined endogenously.

4.1. ACO Investment
We begin our analysis by considering the investment
problem faced by theACO.Medicare providers typically
generate profit fromdelivering healthcare to beneficiaries.
Let the profit associated with spendingD be γD, where
γ> 0 is the profit margin. The expected service-related
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profit is then given by E[γD] � γ(μ − x). Because μ is a
constant, we focus on the ACO’s profit loss due to a
reduction in spending, which is simply γx.2 The ACO’s
expected payoff associated with a savings level of x can
now be written as

u(x, α, β, θ) �
∫ ∞

−∞
r(y, α) + s(y, β)( )

ω(y|x)dy −γx − c(x, θ).
(4)

The payoff function u(x, α, β, θ) is the sum of the ex-
pected shared savings and subsidy payments from
Medicare minus the profit loss and investment. We
assume that the ACO wishes to maximize expected
payoff. The ACO’s optimal savings is then given by

x(θ) � argmax
x∈[0,x̄]

u(x, α, β, θ), (5)

where x̄ is the maximum savings the ACO can achieve
(e.g., x̄ can be trivially set to μ). In general, x depends on
α, β, and σ as well, although we suppress dependence
on these parameters for conciseness when it is clear from
context. We assume that the ACO participates in the
MSSP if U(α, β,θ) ≥ 0.3 The model naturally general-
izes to account for a fixed cost associated with enroll-
ing in theMSSP, which can be represented by subtracting
a constant from u(x, α, β, θ). Including this fixed cost does
not fundamentally alter our results, so we assume it to be
0. We now turn our attention to analyzing the ACO’s
behavior, starting with the following assumption.

Assumption 3. The inequality

ᾱ(hḡ′ + ḡ) + 2β̄ḡ(∂/∂x)c(x, θ) ≤ (1 − β̄)(∂2/∂x2)c(x, θ)
holds for all x ∈ [0, x̄] and θ ∈ Θ.

We now make the following observation.

Lemma 1. Under Assumption 3, the ACO payoff function
u(x, α, β, θ) is strictly concave over [0, x̄].

Assumption 3 is a technical condition that faciliates
our analysis by guaranteeing that the ACO’s payoff
function has a unique maximizer and can be shown to
hold under parameter values from our data set (see
Section EC.1 in the online supplemental material). We
emphasize that strict concavity in the ACO’s payoff
function is not crucial, and our results remain valid for any
payoff function with a unique maximizer (i.e., nonconvex
unimodal functions). We now define a quantity that will
be useful in the remainder of this section.

Definition 1. Define θα,β � inf{θ ∈Θ|x(θ)>0underα,β}.
The threshold θα,β represents the lowest type ACO

that would generate a strictly positive savings given the
shared savings rate α and subsidy rate β (note that θα,0
may not exist if α is very small; in general, we assume
that the minimum shared savings rate in ! is large

enough that θα,0 exists for all α ∈ !). We now introduce
two lemmas that characterize the ACO’s behavior and
will be useful for our main results in the next section.
The first of these relates the savings generated by an
ACO to its type.

Lemma 2. For any α ∈ ! and β ∈ @, the ACO’s optimal
savings x(θ) is nondecreasing overΘ and strictly increasing
over [θα,β,θ̄].
Lemma 2 states that an ACO with high invest-

ment efficacy will generate higher savings. This is not a
surprising result—because it is less costly for a high-type
ACO to achieve a fixed savings level x, one might expect
that it would be optimal for a high-type ACO to save
more than a low-type ACO. The parameter θα,β is the
threshold beyond which ACO savings are guaranteed
to be strictly increasing in type. This threshold exists
because for low-typeACOswhere x � 0, a small increase
in investment efficacy may not be sufficient to make it
profitable for the ACO to generate positive savings, and
thus x may remain at 0. However, if x> 0, then even
slight improvements in the ACO’s investment efficacy
will lead to higher savings. The next lemma shows that
offering a subsidy can boost ACO payoff while also
incentivizing the ACO to generate higher savings.

Lemma 3. For any α ∈ ! and θ ∈ Θ, the ACO’s optimal
savings x(θ) and payoff U(α, β, θ) are nondecreasing in β.
For any α and θ ∈ [θα,0,θ̄], the savings x(θ) and U(α, β, θ)
are strictly increasing in β.

Intuitively, the subsidy effectively increases the ACO’s
investment efficacy because it makes it less costly for
the ACO to generate a fixed saving of x. As a conse-
quence, the ACO’s investment and optimal savings
level increases with β. Further, the ACO’s optimal
payoff U(α, β, θ) also increases with β. This suggests
that introducing a subsidy may help improve par-
ticipation by boosting total ACO payments.

4.2. Medicare’s Optimal Contract
For a given ACO type θ, Medicare’s total expected
spending is given by the sum of the delivery cost and the
shared savings and subsidy payments made to the ACO.
Because the expected delivery cost is E[D] � μ − x, and
μ is a constant, we can formulate Medicare’s problem
equivalently as one of maximizing savings. We thus
writeMedicare’s savings as the ACO’s savings minus the
payments made to the ACO:

v(x, α, β, θ) � x −
∫ ∞

−∞
(r(y, α) + s( y, β))ω(y|x)dy. (6)

We now formulate the contracting problem faced by
Medicare. We assume that the the ACO’s type θ is only
known to be drawn from the known distribution f (θ).
In this setting, Medicare’s contracting problem is to
maximize savings by designing a menu of contracts
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(α(θ), β(θ)), θ ∈ Θ, where α(θ) ∈ ! and β(θ) ∈ @ for all
θ ∈ Θ. AnACO that reports its type to be θ then receives
the contract (α(θ), β(θ)). We assume that Medicare
cannot adjust the parameters of the contract after the
ACO reports its type. For convenience, we also define
U(α,β,θ) � u(x(θ), α, β,θ) andV(α,β,θ) � v(x(θ), α, β,θ)
to be the ACO’s profit and Medicare’s savings under
the ACO’s optimal savings x(θ). Medicare’s optimal
contracting problem is given by

maximize
α(θ),β(θ)

∫
θ∈Θ

V(α(θ), β(θ), θ) f (θ)dθ (7a)

subject to U(α(θ), β(θ), θ) ≥ ū(θ), θ ∈ Θ, (7b)

(OC-I)
U(α(θ), β(θ), θ) ≥ U(α(θ), β(θ), θ′) θ, θ′ ∈ Θ, (7c)

α(θ) ∈ !, θ ∈ Θ, (7d)
β(θ) ∈ @, θ ∈ Θ. (7e)

Let (α∗(θ), β∗(θ)), θ ∈ Θ denote optimal contract pa-
rameters attained as a solution to OC-I. The objective
function (7a) represents Medicare’s expected savings,
where the expectation is taken over both the shock and
type. The constraint (7b) is a participation constraint
that ensures that the ACO receives a payoff of at least
ū(θ). Participation constraints are standard in the mech-
anismdesign literature andare also referred to as individual
rationality constraints (e.g., see Laffont andMartimort 2009
and Borgers et al. 2015). This constraint is particularly
important in the context of theMSSP because voluntary
participation by a large number of ACOs is crucial for
the success of the program (Rosenthal et al. 2011) (for
completeness, we later consider a contracting scheme
in which this participation constraint is relaxed). Con-
straints (7c) are incentive compatibility constraints that
enable Medicare to accurately elicit the ACO’s private
information θ (Laffont and Martimort 2009). The in-
terpretation of constraints (7c) is that the payoff that
the ACO enjoys from truthfully reporting its type θ to
Medicaremust be at least as high as the payoff it receives
from declaring any other type θ′. These constraints
ensure that the feasible set of contracts is restricted to
those that allow the ACO’s type θ—and by extension,
its optimal investment c(x(θ), θ)—to be elicited by
Medicare.4 Note also that OC-I is a bilevel program,
because the constraint sets depend on the optimal
solution of the ACO problem x(θ) [see Dempe (2002) for
an overview of bilevel programming]. Bilevel programs
are typically nonconvex, so the uniqueness of α∗(θ) and
β∗(θ) is generally not guaranteed.

Next, we present three analytical results that char-
acterize the optimal contract. First, let the following
assumption hold in the remainder of this section.

Assumption 4. The inequality (∂/∂x)R(x, α)< 1 holds for
all x ∈ [0, x̄].

This assumption is relatively mild and required
for technical purposes. Intuitively, we would expect
Assumption 4 to hold at larger values of x because the
expected shared savings payment is sublinear at higher
savings levels (owing to α< 1). However, there can
exist values of h and σ such that Assumption 4 is vi-
olated for small x, owing to the discontinuity of the
shared savings payment at y � h. This assumption is
validated by our data set (see Section EC.1 of the online
supplemental material). Our first result regarding the
optimal contract focuses on low-type ACOs.

Proposition 1. There exist ψ> 0 and θ0 > 0 such that if
Cu ≥ ψ and |C� | ≥ ψ, then α∗(θ) ≥ 1/2 and β∗(θ) � 0 for
all θ ≤ θ0.

The condition that Cu and |C� | be sufficiently large
simplifies the analysis but is not restrictive.5 To further
illustrate Proposition 1, recall that the optimal savings
x(θ) of a very low-type ACO will be small (Lemma 2).
As a consequence, the shared savings rate α must be
sufficiently large to guarantee the ACO a nonnegative
payoff. From the ACO performance data, we observed
that the average quality-adjusted shared savings rate
that ACOs received in 2015 was 0.55, with approxi-
mately 15% of ACOs receiving a shared savings rate of
less than 0.5. In light of Proposition 1, this suggests that
a large share of ACOs may be at risk of dropping out of
the MSSP once they transition to the two-sided con-
tract. The next result characterizes the dependence of
optimal contract parameters α∗(θ) and β∗(θ) on θ.

Proposition 2. Suppose that Θ � {θL, θH}, where θH >
θL > 0. There exists δ> 0 such that if θH − θL ≥ δ, then
α∗(θL) ≥ α∗(θH) and β∗(θL) ≤ β∗(θH).
Proposition 2 states that it is optimal for Medicare

to offer a high-type ACO a higher subsidy rate and
a lower shared savings rate compared with a low-type
ACO. The condition that the ACO types be sufficiently
far apart (as represented by the condition that θH −
θL ≥ δ for some δ> 0) is included because the generality
of g(ξ) and c(x, θ), in addition to the absence of a closed-
form expression for x(θ), precludes obtaining stronger
monotonicity results regarding α∗(θ) and β∗(θ). To see
the intuition behind Proposition 2, note that a very high-
type ACO can generate a large savings with a relatively
small investment. Note also that the resulting subsidy
payment associated with a subsidy rate of β is pro-
portional to the ACO’s investment. As a result, it is
worthwhile for Medicare to provide a large subsidy rate
to a high-type ACO because the actual subsidy payment
will be small relative to the increase in savings generated
by the ACO. The converse is true for low-type ACOS.
Our final result in this section compares the outcomes of
the optimal nonsubsidized6 and subsidy-based contracts.
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Proposition 3. Let U∗
0(θ) and U∗

s(θ) be a type θ ACO’s
payoff under the optimal nonsubsidized and subsidy-based
contracts, respectively. Let V∗

0(θ) and V∗
s(θ) be the associ-

ated Medicare savings. Then there exists θs > 0 such that
U∗

s(θ)>U∗
0(θ) and V∗

s(θ)>V∗
0(θ) for all θ ≥ θs.

Proposition 3 states that for sufficiently high-type
ACOs, the subsidy-based contract dominates the
existing shared savings only contract, in the sense that
it produces a strictly higher payoff for both Medicare
and the ACO. The condition that the ACO type is at
least θs is necessary to ensure that the ACO is effective
enough at generating savings for it to beworthwhile for
Medicare to provide an additional payment in the form
of a subsidy. Conversely, if the ACO type is too low,
then it may be the case that the additional savings
generated by the ACO is less than the subsidy payment
itself, which would make it suboptimal for Medicare to
offer a subsidy of any size. From our numerical results,
we find that this type threshold θs is relatively low (see
Section 7). To illustrate the need for Assumption 4 in
Proposition 3, recall that increasing β from 0 to a pos-
itive value increases the ACO savings x (Lemma 3) and
thus increases the expected shared savings payment
as well. Now consider the case in which σ is very close
to 0 so that y ≈ x. Because r(y, α) contains a jump dis-
continuity at y � h, a small increase in x may lead to
a relatively large increase in r(y, α) if x is close to h be-
fore the subsidy. Assumption 4 ensures that the increase
in the expected shared savings payment is not greater
than the increase in x itself. The key implication of Prop-
osition 3 is thatMedicare can generate additional savings
using the subsidy without jeopardizing ACO participa-
tion through lower payments.

5. Endogenous ACO Participation and
Nonparametric Contract

In this section, we present three alternate models for
Medicare’s optimal contracting problem. In the first
model, the ACO’s participation is determined endog-
enously instead of being enforced as a constraint (as in
OC-I). This relaxation of the participation constraint
may further improve Medicare’s savings compared
with formulation OC-I because it allows Medicare to
shed inefficient ACOs from the program. This alternate
formulation is given by

maximize
α(θ),β(θ)

∫
θ∈Θ

(V(α(θ), β(θ), θ) · 1{U(α(θ),β(θ),θ)≥0}) f (θ)dθ
(8a)

(OC − II)
subject to U(α(θ), β(θ), θ) ≥ U(α(θ), β(θ), θ′)

θ, θ′ ∈ Θ, (8b)
α(θ) ∈ !, θ ∈ Θ, (8c)
β(θ) ∈ @, θ ∈ Θ. (8d)

Note that formulation OC-II does not include the par-
ticipation constraint given in OC-I. Instead, we in-
troduce the indicator 1{U(α(θ),β(θ),θ)≥ū(θ)} to the objective
function, which equals 1 if a type θ ACO receives
a payoff of at least ū(θ) under contract (α(θ), β(θ)).
Including this indicator ensures that the associated
Medicare savings are only counted if the ACO par-
ticipates under the given contract.
The second alternate model we consider is a non-

parametric contract that does not involve separate shared
savings or subsidy payments. Instead, the contract takes
the form of a general payment schedule ρ(x) that de-
pends on the ACO’s savings level x. Because ρ(x) can
be a general function, this nonparametric contract can
be viewed as themost flexible possible contract for the
MSSP. Within this framework, a type θ ACO’s profit
under payment ρ(x) and savings level x is given by

u(x, ρ, θ) � ρ(x) − γx − c(x, θ), (9)

and Medicare’s associated savings is given by y − ρ,
which, in expectation, is simply

v(x, ρ) � x − ρ(x). (10)

By the well-known revelation principle (Myerson 1981),
it is sufficient for Medicare to restrict attention to de-
signing a menu of contracts (x(θ), ρ(θ)), θ ∈ Θ, that
maps a savings level and payment to each ACO type.
Under incentive compatibility, an ACO that reports
type θ finds it optimal to generate savings x(θ), for which
it receives payment ρ(x(θ)). With a slight abuse of
notation, we again letU(·) andV(·) represent theACO’s
profit and Medicare’s savings under a type θ ACO’s
optimal savings, respectively. The optimal nonparametric
contract is then given by the solution to

maximize
x(θ),ρ(θ)

∫
θ∈Θ

V(x(θ), ρ(θ), θ) f (θ)dθ (11a)

subject to U(x(θ), ρ(θ), θ) ≥ ū(θ), θ ∈ Θ, (11b)

(OC − III) U(x(θ), ρ(θ), θ) ≥ U(x(θ), ρ(θ),θ′) θ,
θ′ ∈ Θ,

(11c)
x(θ) ≥ 0, θ ∈ Θ, (11d)
ρ(θ) ≥ 0, θ ∈ Θ. (11e)

Because the contracting problem OC-III represents the
most flexible contract, it can be used as a theoretical
benchmark against which to measure the impact of the
subsidy-based contract. As with the subsidy-based con-
tract, Medicare’s optimal contracting problem OC-III can
be formulated as an integer optimization problem (see
Section EC.2 of online supplemental material). The
third alternate model we present combines the salient
features of the preceding two: it represents the optimal

Aswani, Shen, and Siddiq: Incentive Design in Medicare Shared Savings Program
1012 Operations Research, 2019, vol. 67, no. 4, pp. 1002–1026, © 2019 INFORMS



nonparametric contract in a setting where ACO par-
ticipation is also endogenous:

maximize
x(θ),ρ(θ)

∫
θ∈Θ

V(x(θ), ρ(θ), θ) 1[U(x(θ),ρ(θ),θ)≥0] f (θ)dθ
(12a)

(OC − IV)
subject to U(x(θ), ρ(θ), θ) ≥ U(x(θ), ρ(θ), θ′)

θ, θ′ ∈ Θ, (12b)
x(θ) ≥ 0, θ ∈ Θ, (12c)
ρ(θ) ≥ 0, θ ∈ Θ. (12d)

We have thus far formulated four contracting prob-
lems for Medicare, given by OC-I, OC-II, OC-III, and
OC-IV. In the remainder of this paper, we outline an
empirical approach to estimating the potential per-
formance of each of these four contracts and assess
their effectiveness with respect to the status quoMSSP
contract.

6. Estimation
Typically, in the mechanism design literature, the dis-
tribution over agent types is common knowledge to the
principal. In practice, however, this distribution is un-
likely to be known a priori. Our aim in this section is to
use ACO financial data made available by the CMS to
estimate the type density f (θ), which is an important
input to identifying the optimalMSSP contract.7 We also
estimate the variance of the shock σ2 from the data. We
then use these estimates to solve for the optimal pa-
rameters α(θ) and β(θ) under the proposed contract.
Last, we estimate the performance of ACOs in the MSSP
under the existing and proposed contracts, which allows
us to estimate the improvement inMedicare savings that
might result from introducing a performance-based
subsidy to the MSSP.

6.1. Data
We use a data set made publicly available by the
CMS (CMS 2017a). The data set contains the number of
Medicare beneficiaries, benchmark expenditures, ac-
tual expenditures, and quality score for 392 ACOs par-
ticipating within the MSSP in 2015. A summary of the
data set is given in Tables 1 and 2. The ACOs in our
data set represent 7.27 million Medicare beneficiaries
across the United States. In 2015, this group of ACOs was
assigned an aggregate spending benchmark of $73.30
billion and had an actual spending of $72.87 billion, rep-
resenting a $430 million net reduction in total Medicare
spending. Although the total savings was $430 million,
the total shared savings payment earned by ACOs was
$645 million, resulting in a net loss of $215 million for
Medicare. This loss is due to the fact that as of 2015, all
participating ACOs were under an initial three-year

agreement in which the one-sided contract was in effect,
meaning that ACOs were rewarded for generating
savings but not penalized for exceeding their assigned
benchmarks. Note that the mean per-beneficiary savings
by an ACO in the study cohort was $101, which is ap-
proximately 1% of the mean benchmark. The standard
deviation of the per-beneficiary ACO savings was 80,
suggesting substantial variation in ACO performance.
Figure 2 illustrates the distribution in the number of
beneficiaries, spending benchmarks, and savings for all
392 ACOs.
Let μi, bi, yi, and θi represent the benchmark, number

of beneficiaries, actual savings, and type of the ith ACO,
respectively. In practice,μi, bi, and yi are directly observed
by Medicare, but θi represents private information. To
maximize Medicare’s savings, we would ideally esti-
mate θi, . . . , θn from the data and then identify the op-
timal contract to offer to each of the nACOs, according to
their types. However, this approach is not viable because
limited data are available for each ACO (and in many
cases, only a single year). As a consequence, the type
parameters θi, . . . , θn cannot be estimated directly. Un-
der appropriate assumptions, however, we may instead
estimate the distribution over ACO types, f (θ), which
enables us to solve for the optimal contract. For our
numerical experiments, we select a random subset of
275 ACOs (70% of the data) to estimate the model and
validate the resulting model fit against an out-of-sample
data set containing the performance of the remaining 117
ACOs (30% of the data).

6.2. Model Parameterization
We have so far imposed minimal assumptions on the
ACO type and spending shock distributions. Our goal
now is to estimate these distributions from the ACO
performance data in amanner that is both tractable and
captures the dependence of an ACO’s type on its bench-
mark. Here we outline a parameterization of our model
to be used in the estimation. The model primitives to
be specified are the ACO conditional type distribution
f (θ|μ), the shock distribution G(ξ), and the ACO’s in-
vestment function c(x, θ). We assume that ACO types
are distributed on the type interval Θ � [1, 1 × 104]
according to a mixture of (truncated) exponential

Table 1. Performance of ACOs in Medicare Shared Savings
Program in 2015 Under One-Sided Contract

Variable Value

ACOs 392
Total Medicare beneficiaries 7.27 million
Total benchmark expenditures $73.30 billion
Total actual expenditures $72.87 billion
Total savings $430 million
ACO shared savings payments $645 million
Medicare savings −$215 million
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distributions. Each mixture component corresponds
to an ACO benchmark group (e.g., low or high bench-
mark), which allows us to capture the dependence of
ACO type on benchmark in a semiparametric manner.
Although our approach can be extended to alternate
choices for the type distribution, we choose the ex-
ponential distribution on the basis of the observation
that most ACOs generate minimal savings, which sug-
gests that ACO types are concentrated at lower values of
the type parameter. Moreover, use of the exponential
distribution requires us to estimate only a single pa-
rameter for each mixture component, which limits the
complexity of themodel and prevents overfitting. Letm
be the number of mixture components, indexed by j.
Then let }1, . . . ,}m be a disjoint partitioning of the
positive real line, where each interval }j represents
a set of ACO benchmarks. With a slight abuse of no-
tation, let f (θ|λj) denote the exponential distribution
with parameter λj. We assume that the ith ACO’s type
is drawn from f (θ|λj) if the ACO’s benchmark μi be-
longs to}j. For the shock distribution, we assume that
the variable ξ is distributed according to the zero-mean
Laplace distribution G(ξ|σ), where σ is the standard

deviation. This specification of the shock distribution
satisfies Assumption 2. On the basis of this parame-
terization, the quantities to be estimated are them shape
parameters λ1, . . . , λm and the shock parameter σ. Note
that we are not required to determine which mixture
component to assign each observation to because the
assignment depends only on the benchmark μi, which is
known from the data. Last, for the investment function,
we set c(x, θ) � x2/θ, which satisfies Assumption 1.

6.3. Model Idenfiability and Maximum
Likelihood Estimation

The parameters (λ1, . . . , λm, σ) can show to be statisti-
cally identifiable under an additional condition that
is relatively mild. This condition is formalized in
Proposition 4.

Proposition 4 (Identification). If the condition

∫
Θ

e−



2

√
x(θ)/σ f (θ|λ) − f (θ|λ̃)

( )
�� 0 (13)

holds for all σ ∈ Σ and all λ, λ̃ ∈ Λ such that λ �� λ̃, then the
model parameters (λ1, . . . , λm, σ) are identifiable.

Table 2. ACO Summary Statistics.

Mean (standard deviation) Median Interquartile range Range

Beneficiaries (per ACO) 18,547 (18,508) 12,545 7,954–21,286 513–149,633
Benchmark ($ per beneficiary) 10,403 (2,360) 9,863 8,827–11,357 5,548–22,777
ACO savings ($ per beneficiary) 101 (680) 13 −252 to 394 −3,136 to 2,586

Figure 2. Distribution of Number of Medicare Beneficiaries, Spending Benchmarks, and Savings for 392 ACOs Participating in
the MSSP in 2015
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Corollary 1. If Λ and Σ are finite sets and θ̄ is sufficiently
large, then the identification condition (13) holds.

The identification condition (13) ensures that there
cannot exist multiple values of the shape parameter
λ that give rise to the same savings distribution for a
given benchmark group. Identifiability of the model
can be guaranteed by placing appropriate assump-
tions on Λ, Σ, and Θ. Corollary 1 provides one such
set of assumptions. The conditions in Corollary 1 are
mild because one can construct finite sets Λ and Σ by
discretizing a continuous parameter space to an arbi-
trarily fine degree. Additionally, assuming that θ̄ is very
large does not materially change the model or estima-
tion approach because it simply expands the space of
possible ACO types.

We now outline a maximum likelihood estimation
(MLE) approach for the parameters (λ1, . . . , λm, σ).
Obtaining maximum likelihood estimates for our
principal–agent model requires us to solve an inverse
optimization problem, which refers to the estimation
of optimization model parameters from (potentially
noisy) solution data (Ahuja and Orlin 2001, Bertsimas
et al. 2015, Aswani et al. 2018). TheMLEproblem takes
the form of an inverse optimization problem because the
observed savings data represent noisy observations of
the ACO’s optimal decision (recall that y � x + ξ). We
first require the following assumption.

Assumption 5. The data (μi, bi, yi, θi), i � 1, . . . ,n, are
drawn independently from a common distribution.

Assumption 5 states that the benchmark, number
of beneficiaries, type, and savings of an ACO are
independent of other ACOs. This assumption is
reasonable given that each ACO operates indepen-
dently and is necessary for tractability of the esti-
mator. Note that Assumption 5 permits dependence
between the attributes of a given ACO. We now
formalize the estimation problem. Let Λ1, . . . ,Λm and
Σ denote the parameter sets for λ1, . . . , λm and σ,
respectively.

Proposition 5 (MLE). The maximum likelihood estimate of
(λ1, . . . , λm, σ) is given by

(λ̂, σ̂)
� argmax

λ∈Λ,σ∈Σ

∑n
i�1

log
∫
Θ
g yi − x(θ)|σ, θ( )

f (θ|λ(μi))dθ
( )

,

x(θ) � argmax
x≥0

∫ ∞

−∞
r+(y, α)ω(y|x)dy − γx − c(x, θ),

where λ(μi) � λj if μi ∈ }j.

In Proposition 5, x(θ) refers to the optimal savings of
a type θ under the contract that generated the data.
Because our data set contains the performance of ACOs

under the one-sided contract,we use the one-sided shared
savings function r+ (given in (1)) in the ACO’s problem
in Proposition 5. If the data set represented ACO
performance under the two-sided contract, then we
would simply replace r+ with the two-sided payment
function r given in (2).8

Maximum likelihood estimators are often difficult
to solve to global optimality owing to the likelihood
function being nonconvex. As a result, estimation ap-
proaches thatfind localmaxima of the likelihood function
(e.g., expectation maximization) are typically used
(Hastie et al. 2005). However, because the number of
parameters is relatively small in our setting (assuming
that m is not too large), we obtain an approximately
optimal solution to the MLE problem as follows. Let Λ,
Σ, and Θ be discrete sets. First, we numerically solve the
ACO’s problem to obtain x(θ) for each (t, σ) ∈ Θ × Σ
(note that the ACO’s problem depends on σ aswell as θ).
Then, for each σ ∈ Σ, we evaluate the likelihood function
given in Proposition 5 for each (λ1, . . . , λm) ∈ Λ1 × · · · ×
Λm and select the parameter vector (λ1, . . . , λm) with the
largest likelihood.

6.4. Specification of Parameters
6.4.1. Mixture Distribution. If the ACO type distribu-
tion is defined by a large number of mixture compo-
nents, then the resulting model may overfit to the
training data and thus not be generalizable outside
the sample. Thus, two additional modeling decisions
that remain are the number of benchmark groups (i.e.,
mixture components) and the range of ACObenchmarks
covered by each group. We tuned these additional pa-
rameters by using k-means clustering to identify the
endpoints of the intervals corresponding to each of k
benchmark groups and by using 10-fold cross-validation
(on the training data) to identify the optimal number of
benchmark groups. For the cross-validation step, we fit
the model specified above using MLE (described in
Section 6.3) and evaluated model performance by com-
puting the likelihood function for the validation set. We
performed the cross-validation by varying the number
of benchmark groups from one to six and found the
optimal number of mixture components to be three.
The associated benchmark groups implied by the
clustering were }1 � [0, 1.03 × 104], }2 � (1.03 × 104,
1.43 × 104], and }3 � (1.43 × 104,∞).
6.4.2. ACO Profit Function. To solve the MLE prob-
lem, we must also specify the parameters in the ACO’s
profit function u(x, α, β, θ). We set α � 0.46 to represent
the “effective” shared savings rate, which we observed
from the ACO data to be the average shared savings
rate that ACOs received after quality adjustments
(a maximum rate of 0.5 multiplied by the average quality
score of 92%). Although the quality scores vary from
one ACO to the next, we assume a fixed score of 92%
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across all ACOs to reduce model complexity during
estimation. We find that we obtain a strong model
fit despite this simplifying assumption. We explicitly
incorporate quality scores in our estimate of ACO
performance under the optimal contract by sampling
each ACO’s quality in the bootstrapping procedure,
where it is used to adjust the nominal shared sav-
ings rate.

The remaining parameters to be defined are the
payment cap Cu, the penalty cap C�, the minimum sav-
ings and losses threshold h, and the ACO’s Medicare
profit margin γ. We set Cu � 2,000 and C� � −1,500
according to MSSP guidelines (Federal Register 2011).
We set h � 200 because the minimum savings and losses
threshold ismandated to be 2%of theACO’s benchmark,
and the average benchmark in the data set was $10, 403
per beneficiary.9 Last, we set the ACO’s Medicare pro-
fit margin as γ � 0.03 based on a recent report by the
Medicare PaymentAdvisoryCommissionMedPAC (2010).

6.5. Estimation of Contract Performance
Using the parameter estimates obtained from Section 6,
we solve the four optimal contracting problems OC-I,
OC-II, OC-III, and OC-IV described in Sections 4 and 5.
The space of possible shared savings and subsidy rates
is given by ! � {0, 0.05, 0.1, . . . , 0.9} and @ � {0, 0.05,
0.1, . . . , 0.9}, respectively. We let the type space be dis-
crete; that is, we set Θ � {1, 500, 1000, . . . , 5000}, which
allows us to formulate and solveOC-I, OC-II, OC-III, and
OC-IV as integer optimization models (see Section EC.2
of the online supplemental material). For problemsOC-I
and OC-III, which include participation constraints,
ū(θ) is set to the expected ACOpayoff under the existing
two-sided contract for a type θACO. This restricts the
set of feasible contracts in problems OC-I and OC-III
to those that produce at least as high a payoff for the
ACO as the current MSSP contract. For the nonpara-
metric contract, we use the same Θ as above. For each
θ ∈ Θ, Medicare selects ρ(θ) from the set 5 � {0, 20,
40, . . . , 2000} and x(θ) from the set - � {0, 20, 40, . . . ,
2000}.10

Using the estimated model parameters, we simulate
ACO performance under the existing MSSP contract
and the proposed contracts using a standard non-
parametric bootstrapping procedure [see Efron and
Tibshirani (1994) for a comprehensive overview of
bootstrapping techniques]. In particular, for each ACO,
we sample its benchmark spending, actual spending,
quality score, and number of beneficiaries, which allows
us to estimate the total savings under each contract. We
also compute 95% confidence intervals for the savings
under each contract and perform bootstrap hypothesis
tests to assess the statistical significance of the esti-
mated improvement of the proposed models over the
baseline contract.

7. Results and Policy Implications
For validation purposes, we estimate the model pa-
rameters using data from a random subset of 275 ACOs
(70% of the data) and validate them against an out-of-
sample data set containing the performance of the
remaining 117 ACOs (30% of the data). Table 3 presents
the parameter estimates for each of the three benchmark
groups, where λ̂ is the estimated shape parameter of the
exponential distribution and σ̂ is the estimated standard
deviation of the random shock. Note that σ̂ is the same
for all three benchmark groups because we estimate only
a single shock distribution to avoid overfitting. The esti-
mated mean of the exponential distributions is given by
1/λ̂, whichwemay interpret as the averageACO type for
the given benchmark cluster. Because the parameter es-
timates in Table 3 are difficult to interpret directly,
we also report the expected optimal savings Et[x(θ)]
under the MSSP’s current one-sided contract.
To validate our model, we simulated the savings that

would be generated under the current contract using
the parameter estimates given in Table 3. Figure 3
shows the empirical savings distribution for both the
in-sample and out-of-sample data sets and the simu-
lated cumulative distribution function (CDF) from our
fitted model (with 10,000 samples). We performed a
Kolmogorov–Smirnov (K-S) test to assess the goodness
of fit of our model with respect to the empirical savings
data (Massey 1951). The K-S statistic (i.e., themaximum
vertical distance between the empirical and simulated
CDFs) on the out-of-sample data set was 0.076, with an
associated p-value of p> 0.2. This p-value implies a failure
to reject the null hypothesis that the two CDFs were
generated under different statistical models at a con-
fidence level of 80%, suggesting a strong model fit.
Our results show that, in general, ACOs with high

benchmarks are more likely to be high type and thus
more likely to generate positive savings. As shown
in Table 3, we estimated the expected per-beneficiary
savings of low (< $10, 300), intermediate ($10, 300−
$14, 300), and high (> $14, 300) benchmark ACOs to be
$1, $140, and $260, respectively. Figure 4 provides an
accompanying visualization that shows the estimated
type distribution for each benchmark group. Observe
that the type distribution for low-benchmark ACOs is
concentrated nearθ � 0, whereas the distributions for the
intermediate- and high-benchmark groups place mass
across a range of values of θ. As one might expect, the
parameter estimate λ̂j for the intermediate-benchmark
group falls between the low- and high-benchmark values.
We numerically found the type threshold θs discussed in
Section 4.2 to be approximately 80 for our choice of the
ACO investment function. As can be seen from Figure 4,
ACOs in the intermediate- and high-benchmark groups
have a high probability of being above this type
threshold, suggesting that the subsidy may be useful in
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boosting savings from these groups. In contrast, because
low-benchmarkACOs are low type, the subsidymay not
be effective in improving savings from that group.

The observation that high-benchmark ACOs tend to
save more may be a consequence of the benchmark
calculation methodology that is currently used by the
MSSP. As discussed previously, an ACO’s benchmark
is largely determined by its historical spending. Because
there are multiple factors that contribute to an ACO’s
historical spending, such as regional variations in health-
care costs, it is difficult to pinpoint exactlywhy a particular
ACO has high historical spending. However, our results
suggest that ACOs with high benchmark expenditures
may have an easier time reducing spending because they
were historically cost inefficient and thus have “more
room” for improvement. By contrast, an ACOwith a low
benchmark may be less able to generate savings because
it has historically been cost efficient, and thus additional
reductions in spending are more difficult to attain.

Figure 5 shows the optimal contract parameters for
OC-I and OC-II. Note that the right panel of Figure 5
exhibits the behavior predicted by Proposition 1, where
low-type ACOs are assigned a shared savings rate
where α(θ) ≥ 1/2. Additionally, the results shown in
Figure 5 align with Proposition 2, where high-type
ACOs are assigned relatively higher subsidy rates

and lower shared savings rates, with the converse
holding true for low-type ACOs. Table 4 shows the
estimated ACO payoff, Medicare savings, and total
welfare under four contracts: the subsidy-based contract
including the participation constraint (OC-I), the subsidy-
based contract with endogenous participation (OC-II),
the nonparametric contract with participation constraint
(OC-III), and the nonparametric contract with endoge-
nous participation (OC-IV). For comparison purposes,
we simulate the performance of the 392 ACOs once they
enter the current two-sided contract of the MSSP and
report the results in the “Baseline” column. We also
report the difference between the baseline and optimal
contracts, denoted by Δ, as well as a one-sided p-value
to test the significance of the difference [see Efron and
Tibshirani (1994) for an overview of hypothesis testing
with the bootstrap]. We also report the 95% confidence
intervals for the payoff estimates under each contract
and the performance gapΔ. We note here that although
we held quality constant throughout our analysis thus
far, for simulation purposes, we also sample quality
scores for each ACO in the bootstrap and calculate the
savings according to the quality-adjusted value of the
shared savings rate α.
In the subsidy-based contract (OC-I), the ACOs and

Medicare both experience an improvement compared
with the baseline contract. This finding aligns with the
result in Proposition 3. Specifically, ACO payoff in-
creases by 12% ($282 to $316 million), and Medicare
savings increase by 43% ($146 to $207 million), relative
to their baseline levels. Note also that the increase in
total welfare (the sum of ACO payoff and Medicare
savings) is 22% under the subsidy-based contract. As
an intermediate step in our analysis, we also solved for
the optimal non-subsidy-based contract where β is held

Table 3. Maximum Likelihood Parameter Estimates for
Three Benchmark Groups

Benchmark No. of ACOs λ̂ E[θ] σ̂ E[x(θ)]
<$10,300 228 1 1 550 $1
$10,300−$14,300 140 1.1 × 10−3 900 550 $140
>$14,300 24 6.7 × 10−4 1,500 550 $260

Figure 3. (Color online) Empirical and Simulated Savings Under One-Sided Contract for In-Sample and Out-of-Sample Data
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fixed at 0 and the contracting problem is solved over
α(θ) only to identify the optimal set of shared savings
rates. The improvement in Medicare savings from op-
timizing over the shared savings rate alone was found
to be negligible, so those results are omitted. This result
suggests that in the absence of a subsidy, Medicare
cannot boost savings by adjusting the shared savings
rate without compromising ACO payoff and, by exten-
sion, their participation in the MSSP. Although it has
been suggested that theMSSP should increase the shared
savings rate to strengthen incentives for ACOs (Chernew
et al. 2014), our analysis suggests that doing so will only
further reduce Medicare savings owing to the associated
increase in ACO payments.

In Section 4.2, we showed that subsidizing the in-
vestmentsmade byACOs to reduce healthcare spending
can improve both Medicare savings and ACO payoff. This
result is validated by our empirical analysis and the
findings in theTable 4 underOC-I. Further, the vastmajority
of ACOs in the MSSP remain under the initial one-sided
contract and are therefore not penalized for accruing
losses. However, of the 392ACOs in our data set, 28 attained
quality scores thatwould result in an effective shared savings
rate that is less than 0.5 in the two-sided contract. In light
of Proposition 1, these ACOs are particularly at risk for
dropping out of the MSSP once they transition to the
two-sided contract. Our results suggest that subsidizing
ACO investments may be useful in mitigating this risk.

Figure 4. (Color online) Estimated ACO Type Distributions for Low (< $10,300), Intermediate ($10,300–$14,300), and High
(> $14,300) Benchmark Groups

Figure 5. (Color online) Optimal Contract Parameters for Subsidy-Based Contract with Participation Constraint (OC-I) and
with Endogenous Participation (OC-II)
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The second block in Table 4 (OC-II) shows the es-
timated performance of the subsidy-based contract
when ACO participation is determined endogenously
instead of being enforced as a constraint in the optimal
contracting problem. As we would expect, relaxing the
participating constraint increases Medicare’s savings
significantly. However, unlike the win–win scenario
that arises under OC-I, many ACOs will see a decrease
in payments under OC-II, which would likely lead to
some ACOs dropping out of the MSSP. Although Medi-
care should expect total savings to increase under this
contract, abandonment of the MSSP by a large number
of ACOsmaymake it more challenging for Medicare to
pursue a nationwide transition away from fee-for-
service and toward voluntary pay-for-performance pro-
grams. Indeed, maintaining a critical mass of ACOs is
believed to be important to the success of the MSSP
(Rosenthal et al. 2011). Therefore, the CMS should
carefully weigh the possible trade-offs between total
savings and ACO participation before making any ad-
justments to the MSSP contract.

The third block in Table 4 (OC-III) shows the esti-
mated performance of the optimal nonparametric
contract when the participation constraint is included.
The optimal contract parameters are shown in Figure 6.
Note that Figure 6 is expressed in dollars per benefi-
ciary (e.g., for the median ACO with a benchmark
$9,863 per beneficiary, a value of 100 corresponds to
approximately 1% of the ACO’s benchmark). Because
of its generality, this contract represents the best pos-
sible performance of any MSSP contract given the es-
timated type distribution. Under the nonparametric
contract, Medicare’s total savings increases from $146

million to $237 million, which represents a 63% increase
in total savings comparedwith the baseline contract. The
nonparametric contract also improves on the subsidy-
based contract ($237 million vs. $207 million). This
is unsurprising given the additional flexibility pro-
vided by the nonparametric contract. However, it is
worth noting that a significant share of the improve-
ment potential associated with the nonparametric
contract ($91 over baseline) is captured by the subsidy-
based contract ($62 million over baseline). This result
suggests that introducing a straightforward investment
subsidy to the MSSP carries much of the benefit as-
sociated with completely redesigning the MSSP con-
tract. The fourth block in Table 4 shows the estimated
performance when ACO participation is determined
endogenously. Unsurprisingly, this contract gener-
ates the highest savings overall for Medicare of the
four models.
In general, Table 4 suggests that a total overhaul of

the MSSP contract, as represented by the nonparametric
contracting problems OC-III and OC-IV, is likely to
generate higher savings than the the subsidy-based
contract. However, the sheer scale of the MSSP ($70+
billion in Medicare spending) suggests that there exists
significant institutional inertia behind the current pro-
gram,making a total overhaul of the programpotentially
difficult for Medicare. In contrast, although the subsidy-
based contract generates lower savings, it is achieved
through a less dramatic modification of the current
contract,making it potentiallymore practical to implement.
This trade-off between savings and implementability
should be considered as the CMS decides how to move
forward with the MSSP.

Table 4. Bootstrap Estimates for Subsidy-Based Contract with Participation Constraint (OC-I), Subsidy-Based Contract with
Endogenous Participation (OC-II), Nonparametric Contract with Participation Constraint (OC-III), and Nonparametric
Contract with Endogenous Participation (OC-IV), in Millions

Model

Baseline Optimal Δ

Mean 95% Confidence interval Mean 95% Confidence interval Mean 95% Confidence interval p-Value

OC-I
ACOs $282 ($188, $382) $316 ($216, $423) $34 ($22, $49) <0.01
Medicare $146 ($39, $260) $207 ($97, $328) $62 ($48, $79) <0.01
Total $427 ($234, $642) $523 ($320, $741) $96 ($78, $118) <0.01

OC-II
ACOs $282 ($188, $382) $126 ($87, $174) −$156 (−$212, −$97) <0.01
Medicare $146 ($39, $260) $377 ($295, $455) $231 ($164, $304) <0.01
Total $427 ($234, $642) $503 ($383, $614) $72 (−$48, $189) >0.1

OC-III
ACOs $282 ($188, $382) $301 ($265, $346) $19 (−$73, $109) >0.1
Medicare $146 ($39, $260) $237 ($92, $381) $91 ($30, $152) <0.01
Total $427 ($234, $642) $538 ($325, $745) $110 ($82, $122) <0.01

OC-IV
ACOs $282 ($188, $382) $120 ($95, $146) −$164 (−$222, −$94) <0.01
Medicare $146 ($39, $260) $384 ($283, $490) $236 ($163, $313) <0.01
Total $427 ($234, $642) $504 ($383, $615) $72 (−$48, $189) <0.01
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8. Conclusion
The MSSP was created to incentivize Medicare pro-
viders to formACOs and reduce spending on healthcare
delivery. To date, results from the MSSP have been
mixed, with one-third of participating ACOs failing to
generate sufficient savings to receive reward payments
from Medicare. As a consequence, total Medicare sav-
ings has been modest, and the MSSP currently faces the
risk of many ACOs abandoning the program entirely. In
this paper, we proposed a new type of contract to
address the challenges in the MSSP. In addition to the
shared savings payment, we proposed that the MSSP
incorporate direct subsidies to partially reimburse ACO
investments toward efficiency improvements. We showed
that selecting the shared savings and subsidy rates
appropriately yields a contract that dominates all pos-
sible contracts within the current, nonsubsidized pro-
gram, in the sense that it boosts both Medicare savings
and ACO payments. We also quantified the improve-
ment potential through structural estimation of the
principal–agent model and found that switching to the
proposed contract can increase both Medicare savings
and ACO payments. We also found that the proposed
contract performs well in comparison with a non-
parametric contract that represents the theoretical best
performance that can be expected from theMSSP under
the estimated agent model. We also found that ACOs
with low benchmarks face difficulties in generating
savings. The average savings of an ACO with a bench-
mark greater than $14,300 per beneficiary was estimated
to be $240 (≈2%), whereas the average savings of an ACO
with a benchmark of less than $10,300 per beneficiarywas
estimated to be effectively zero.

It is unlikely that there is a single solution to the
challenges currently faced by the MSSP. More likely,
amultifaceted restructuring of the existing contract will
be required to boost Medicare savings and increase the
appeal of the MSSP to existing and prospective ACOs.
Our analytical and empirical results suggest that ACO
investment subsidies have the potential to play an im-
portant role in this restructuring.Moreover, as theMSSP
continues and more data are collected, a clearer picture
of ACO performance within the MSSP will emerge.
We hope that the empirical approach developed in this
paper can serve as a springboard for future analyses of
the MSSP.
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Appendix. Proofs
For the purposes of this section, let R(x, α) � E[r(y, α)] �∫ ∞
−∞ r(y, α)ω(y|x)dy be the expected shared savings payment,
and let S(x, β) � E[s(y, β)] � ∫ ∞

−∞ s(y, β)ω(y|x)dy be the expected
subsidy payment.We first present a lemma that is useful in the
proofs to follow.

Lemma 4. The derivative of the expected shared savings payment
with respect to x is

(∂/∂x)R(x, α) � (1 − α)(hg(−h − x) + G(−h − x) − G(C� − x))
+ α(hg(h − x) + G(Cu − x) − G(h − x)).

The derivative of the expected subsidy payment with respect to x is

(∂/∂x)S(x, β) � β((∂/∂x)c(x, θ)(1 − G(h − x)) + c(x, θ)g(h − x)).

Figure 6. (Color online) Optimal Contract Parameters for Nonparametric Contract with Participation Constraint (OC-III) and
with Endogenous Participation (OC-IV), in Dollars per Beneficiary
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Proof. Consider the shared savings term first. Integrating
over the piecewise expression given in (2), we have

R(x, α) �
∫ ∞

−∞
r(y, α)ω(y|x)dy

� (1 − α)C�

∫ C�

−∞
ω(y|x)dy + (1 − α)

∫ −h

C�

yω(y|x)dy

+α

∫ Cu

h
yω(y|x)dy + αCu

∫ ∞

Cu

ω(y|x)dy.

Because y � x + ξ, we may apply a change of variables and
write the expression above equivalently as

R(x, α) � (1 − α)C�

∫ C�−x

−∞
g(ξ)dξ + (1 − α)

∫ −h−x

C�−x
(x + ξ)g(ξ)dξ

+α

∫ Cu−x

h−x
(x + ξ)g(ξ)dξ + αCu

∫ ∞

Cu−x
g(ξ)dξ.

Applying Leibniz’s rule to each of the four terms above yields

(∂/∂x)∂R(x, α) � − (1 − α)C�g(C� − x) + (1 − α)(hg(−h − x)
+ C�g(C� − x) + G(−h − x) − G(C� − x))
+ α( − Cug(Cu − x) + hg(h − x) + G(Cu − x)
− G(h − x)) + αCug(Cu − x)

� (1 − α)(hg(−h − x) + G(−h − x) − G(C� − x))
+ α(hg(h − x) + G(Cu − x) − G(h − x)),

where the second line is obtained by canceling out terms. For
the subsidy term,we integrate over the expression given in (3)
to obtain S(x, β) � βc(x, θ) ∫ ∞

h ω(y|x)dy � βc(x, θ) ∫ ∞
h−x g(ξ)dξ.

Applying the chain rule to this expression yields

(∂/∂x)S(x, β) � β

(
(∂/∂x)c(x, θ)(1 − G(h − x))

+ c(x, θ)(∂/∂x)
∫ ∞

h−x
g(ξ)dξ

( ))
� β (∂/∂x)c(x, θ)(1 − G(h − x))(
+ c(x, θ)g(h − x)). □

Proof of Lemma 1. To show that u(x, α, β, θ) is strictly
concave over [0, x̄] for any θ, it suffices to show that
(∂/∂x)u(x, α, β, θ)< 0 for all x ∈ [0, x̄] and θ ∈ Θ. Pick some x
and θ such that (∂2/∂x2)u(x) exists. (Note that (∂2/∂x2)u(x)
may be undefined for certain values of x owing to the possible
nondifferentiability of the density g(ξ) at some points. In
these cases, we may consider the left and right derivatives of
u(x, α, β, θ) and apply a similar argument.) By twice differ-
entiating the expression for u(x, α, β, θ) given in (4), we have
(∂2/∂x2)u(x)�(∂2/∂x2)R(x,α)+(∂2/∂x2)S(x,β)−(∂2/∂x2)c(x,θ).
We consider each of the three terms in this equation in se-
quence. For the shared savings term (∂2/∂x2)R(x,α), differ-
entiating the expression for (∂/∂x)R(x,α) given in Lemma 4
yields (∂2/∂x2)R(x,α)�(1−α)(−hg′(−h−x)−g(−h−x)+g(C�−
x))+α(−hg′(h−x)−g(Cu−x)+g(h−x)). Because g is increas-
ing over (−∞,0) and C� ≤−h, we have g(C�−x)≤g(−h−x) for
all x. Further, we have g′(−h−x)≥0 and thus −hg′(−h−x)≤0
for all x. It follows that (1−α)(−hg′(−h−x)−g(−h−x)+g(C�−
x))≤0. Hence, we may drop the first term in the expression
for (∂2/∂x2)R(x,α) above to obtain (∂2/∂x2)R(x,α) ≤ α(−hg′·
(h−x) −g(Cu−x)+g(h−x)). Now, by dropping the negative

term−g(Cu−x) and noting that−hg′(h−x) ≤ hḡ′ and g(h−x) ≤
ḡ, we have (∂2/∂x2)R(x,α) ≤ ᾱ(hḡ′ + ḡ). For the subsidy term
(∂2/∂x2)S(x, β), we differentiate the expression for (∂/∂x)S(x,
β) given in Lemma 4 to obtain

(∂2/∂x2)S(x, β) � β((1 − G(h − x))(∂2/∂x2)c(x, θ)
+ 2g(h − x)(∂/∂x)c(x, θ) − c(x, θ)g′(h − x)),

≤ β̄((∂2/∂x2)c(x, θ) + 2ḡ(∂/∂x)c(x, θ)),

where the inequality follows by noting that 1 − G(h − x) ≤ 1
and g(h − x) ≤ ḡ. Combining the bounds for (∂2/∂x2)R(x, α)
and (∂2/∂x2)S(x, β), we can now write

(∂2/∂x2)u(x) ≤ ᾱ(hḡ′ + ḡ) + β̄((∂2/∂x2)c(x, θ)
+ 2ḡ(∂/∂x)c(x, θ)) − (∂2/∂x2)c(x, θ)

� β̄(hḡ′ + ḡ) + 2βḡ(∂/∂x)c(x, θ)
− (1 − β̄)(∂2/∂x2)c(x, θ)

< 0,

where the final strict inequality follows fromAssumption 3. □

Proof of Lemma 2. Let α and β be fixed. We first prove that
x(θ) is strictly increasing over [θα,β,θ̄]. We wish to show that
(d/dθ)x(θ)> 0 for any θ ∈ [θα,β,θ̄]. Pick any such θ. Because
x(θ)> 0, it follows that x(θ) is a solution to the first-order
condition (∂/∂x)u(x, α, β, θ) � (∂/∂x)R(x, α) + (∂/ ∂x)S(x, β) −
γ − (∂/∂x)c(x, θ) � 0. By the implicit function theorem, we
have (d/dθ)x(θ) � −(∂2/∂x∂θ)u(x, α, β,θ)/(∂2/∂x2)u(x, α, β,θ).
Because R(x, α) and S(x, β) do not depend on θ, we have
−(∂2/∂x∂θ)u(x) � (∂2/∂x∂θ)c(x,θ)<0, where the inequality
follows frompart (iii) ofAssumption 1. Further, byProposition 1,
we also have (∂2/∂x2)u(x,α,β,θ)<0, and thus (d/dθ)x(θ)>0
over [θα,β,θ̄]. It remains to show that x is nondecreasing over
[θ,θα,β], which follows immediately from the definition of θα,β

and the observation that x is bounded below by 0. □

Proof of Lemma 3. This proof proceeds in a manner similar
to Lemma 2. Pick some α ∈ ! and θ ∈ [θα,0,θ̄]. Now pick any
β ∈ [β, β̄]. Because θ ≥ θα,0, we have x(β)> 0. It follows that
x(β) is a solution to the first-order condition (∂/∂x)R(x, α) +
(∂/∂x)S(x, β) − γ − (∂/∂x)c(x, θ) � 0. By the implicit function
theorem, we have (d/dβ)x(θ) � −(∂2/∂x∂β)u(x, α, β, θ)/(∂2/
∂x2)u(x). Because R(x, α) and c(x, θ) do not depend on β, we
have −(∂2/∂x∂β)u(x) � −(∂2/∂x∂β)S(x, β) � −(∂/∂x)c(x, θ)(1−
G(h − x)) + c(x, θ)g(h − x)< 0. Further, by Lemma 1, we have
(∂2/∂x2)u(x, α, β, θ)< 0. It follows that (d/dβ)x(θ)> 0. To show
that u(x(θ)) is increasing in β, note that S(x, β) is strictly in-
creasing in β, and therefore so is the ACO’s payoff u(x) for any
x. It follows that the ACO’s optimal payoff u(x(θ)) must be
strictly increasing in β as well. □

Proof of Proposition 1. We first show that limθ→0 x(θ) � 0
for any α. Pick some α, and suppose that for ε> 0 we have
x(θ)> ε for all θ> 0. Clearly, the shared savings term
R(x(θ), α) is bounded above by x(θ). The ACO’s optimal
payoff can then be bounded above by u(x(θ)) ≤ x(θ) − γx(θ) −
(1 − β)c(x(θ), θ). Because x(θ)> ε for all θ> 0, and because by
Assumption 1 c(x, θ) is increasing in x, we have
c(ε,θ) ≤ c(x(θ), θ) for all θ> 0. Also by Assumption 1, we
have c(ε, θ) −→∞, and thus limθ→0 c(x(θ),θ) �∞. It follows
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that limθ→0 u(x(θ)) �−∞. However, it is straightforward to
show that u(0,θ) is bounded from below, which yields a con-
tradiction. We conclude that limθ→0 x(θ)� 0. We now show
that there exists θ′

0>0 such that β(θ) � 0 is an optimal subsidy
rate for θ≤θ′

0. This follows immediately from the fact that
limθ→0 v(α, 0, θ) � −R(0, α) ≥ −R(0, α) − limθ→0 βc(x(θ), θ) �
limθ→0 v(α, β, θ) for any β> 0 and α> 0. We now show that
there exists θ0 such that α(θ) ≥ 1/2 for all θ ≤ θ0 for suf-
ficiently large Cu and |C� |. Using the expression for R(x, α)
given in Lemma 4,we have limCu→∞ limCu→∞ limθ→0 R(x(θ),α)�
(1−α)∫ −h

−∞ξg(ξ)dξ+α
∫ ∞
h ξg(ξ)dξ� (1−α)E[ξ|ξ≤−h] + αE[ξ|

ξ≥ h]� (2α−1)E[ξ|ξ≥ h]. Note that u(x)≤R(x,α) for all
x≥ 0. Therefore, for Cu and |C� | sufficiently large, we have
limθ→0 u(x(θ))≤ limθ→0 R(x(θ),α)<0 if (2α−1)<0. Because
the participation constraint requires u(x(θ))≥ ū(θ)≥ 0, it fol-
lows that α(θ)≥ 1/2 for sufficiently small θ. □

Proof of Proposition 2. Let θL > 0 be fixed. We first show
that β∗(θH) ≥ β∗(θL) for sufficiently large θH. It suffices to show
that for any α ∈ !, limθ→∞(d/dβ)v(x(θ), β, θ)|β�β∗(θL) > 0. Taking
the total derivative of v with respect to β yields (d/ dβ)v(x(θ),
β, θ) � (∂/∂x)v(x, β, θ)(d/dβ)x(θ) + (∂/∂x)∂v(x, β, θ). First, ex-
panding the term (∂/∂x)v(x, β, θ) for all x ∈ [0, x̄], we have

(∂/∂x)v(x, β, θ) � 1 − (∂/∂x)R(x, α) − (∂/∂x)S(x, β)
� 1 − (∂/∂x)R(x, α) − β (∂/∂x)c(x, θ)(
· (1 − G(h − x)) + c(x, θ)g(h − x))

≥ 1 − (∂/∂x)R(x, α) − β((∂/∂x)c(x, θ) + c(x, θ)ḡ)
≥ δ − β((∂/∂x)c(x, θ) + c(x, θ)ḡ),

where in the final inequality we have δ � 1 − (∂/∂x)R(x, α)> 0
for all x ∈ [0, x̄] and α ∈ ! by Assumption 4. Because by
Assumption 1 the functions c(x, θ) and (∂/∂x)c(x, θ) are both
decreasing in θ, it follows that limθ→∞ (∂/∂x)c(x,θ)+( c(x,θ)ḡ)�
0 for all x∈ [0, x̄]. Hence, limθ→∞ (∂/∂x)v(x,β, θ)|β�β∗(θL)>0 for all
x ∈ [0, x̄]. Further, because by Proposition 3, (d/dβ)x(θ)>0 for
sufficiently large θ, it follows that limθ→∞ (∂/∂x)v(x,β,θ)(d/dβ)
x(θ)|β�β∗(θL)>0. Now note that for the second term, we
have limθ→∞(∂/∂β)v(x, β, θ) � limθ→∞ c(x, θ)(1 − G(h − x)) ≤
limθ→∞ c(x̄, θ) � 0. It follows that limθ→∞ (∂/∂β)v(x(β),
β, θ)|β�β∗(θL) > 0. Thus, β∗(θH) ≥ β∗(θL). We now show that
α∗(θH) ≤ α∗(θL). Suppose that α∗(θH)>α∗(θL). Because the
ACO’s payoff u(x) is strictly increasing in α and β, if β∗(θH) ≥
β∗(θL) and α∗(θH)>α∗(θL), then a type θL ACO could earn
a higher payoff by reporting its type to be θH instead of
θL, which violates incentive compatibility. Therefore, α∗(θH) ≤
α∗(θL). □

Proof of Proposition 3. We first establish two supporting
results. For conciseness, we suppress dependence of x(·) on α
and β and dependence of v(·) on α. First, we show that
Medicare’s savings function v(x(θ), β, θ) is continuous in β.
Note that v(x, β, θ) is continuous in x and β. By the Berge
maximum theorem, x(θ) is upper hemicontinuous in β. Be-
cause by Lemma 1 the optimal savings x(θ) is unique, x(θ) is
also continuous in β. Hence, v(x(θ), β, θ) is continuous in β.
Next, we show that for all α ∈ ! and θ ∈ Θ, there exists βs > 0
such that (∂/∂x)∂v(x, β, θ)> 0. Pick some α and θ. Now define
δ � 1 − (∂/∂x)R(x, α)> 0, where the inequality follows from

Assumption 4. Following the proof of Proposition 2, we have
(∂/∂x)v(x, β, θ) ≥ δ − β((∂/∂x)c(x̄, θ) + c(x̄, θ)ḡ). Because δ> 0,
(∂/∂x)v(x, β, θ)> 0 for sufficiently small β. We now prove the
main result. We wish to show that there exists some θs > 0
such that for any θ ≥ θs and α ∈ !, there exists β̃> 0 such that
v(x(θ), 0, θ)< v(x(θ), β̃, θ). Because v(x(θ), β, θ) is continuous
in β, for any β̃ we can apply the mean value theorem to write
v(x(θ), β̃, θ) � v(x(θ), 0, θ) + β̃ · (d/dβ)v(x(θ), β, θ)|β�ηβ̃ for some
η ∈ [0, 1]. Therefore, to show that v(x(θ), 0, θ)< v(x(θ), β̃, θ) for
each θ ≥ θs and β̃, it suffices to show that β̃(d/dβ)v(x(θ), β,
θ)|β�ηβ̃ > 0 for sufficiently large θ and an associated β̃ and
η ∈ [0, 1]. We do so by showing that there exists θs such
that for all θ ≥ θs there exists a constant β̃ such that
(d/dβ)v(x(θ), β, θ)> 0 for all β ∈ [0, β̃] and α ∈ !. Pick β̃ � βs.
Applying the chain rule yields (d/dβ)v(x(θ), β,θ) � (∂/∂x)
v(x, β,θ)(d/dβ)x(θ)+ (∂/∂β)v(x,β,θ).Note that (∂/∂x)v(x, β,θ)
>0 for all α∈! if β≤ βs from the earlier argument, and
by Lemma 3, (d/dβ)x(θ)>0 for all β if θ≥θα,0. It follows
that (∂/∂x)v(x, β,θ)(d/dβ)x(θ)>0 for any α∈!, θ≥θα,0, and
β∈ [0, βs]. We also have (∂/∂β)v(x,β,θ) �−c(x,θ)(1−G(h− x)),
which, by Assumption 1, can be made arbitrarily small by
picking θ to be large. It follows that for all α∈!, β∈ [0,βs],
limθ→∞ (d/dβ)v(x(θ),β,θ)>0. Thus, there exists θs such that for
all θ≥θs and α ∈!, there exists β̃ such that v(x(θ),0,θ)<
v(x(θ), β̃,θ). It follows that V∗

s(θ)>V∗
0(θ). Because for any x>0,

the ACO’s payoff u(x) is strictly increasing in β, it follows that
U∗

s(θ)>U∗
0(θ) as well. □

Proof of Proposition 4. We prove that the model is iden-
tifiable for a single benchmark group because the proof ex-
tends in a straightforward manner to multiple benchmark
groups. Let μ be fixed. We wish to show that if ω(y|μ, λ, σ) �
ω(y|μ, λ̃, σ′) for all y, then we must have λ � λ̃ and σ � σ′
(Bickel and Doksum 2015). Suppose that there exist param-
eters (λ, σ) and (λ̃, σ′) such that (λ, σ) �� (λ̃, σ′) and ω(y|μ,
λ, σ) � ω(y|μ, λ̃, σ′) for all y. Thus, ω(y|μ, λ, σ) � ω(y|μ, λ̃, σ′)
for all y ≥ x(θ̄) as well. Writing ω(y|μ, λ, σ) in terms of the
shock and type densities, we have ω(y|μ, λ, σ) � ∫

Θ
g(y −

x(θ)|σ, θ) f (θ|λ)dθ. Because g is the Laplace density, we have

∫
Θ
(1/(2σ))e




2

√ (y−x(θ))/σf (θ|λ)dθ

�
∫
Θ
(1/(2σ′))e




2

√ (y−x(θ))/σ′ f (θ|λ̃)dθ for all y ≥ x(θ̄).
(A.1)

We consider two cases: σ �� σ′ and σ � σ′. First, suppose that
σ �� σ′. For conciseness, let C � ∫

Θ
(1/(2σ))e−




2

√
x(θ)/σf (θ|λ)dθ

and C′ � ∫
Θ
(1/(2σ′))e−




2

√
x(θ)/σ′ f (θ|λ̃)dθ, and note that C and C′

are constant with respect to y. Equation (A.1) then implies that
Ce




2

√
y/σ � C′e




2

√
y/σ′ for all y ≥ x(θ̄). Taking the natural logarithm

of both sides and rearranging yield
( 



2
√

/σ − 


2

√
/σ′

)
y + lnC −

lnC′ � 0 for all y ≥ x(θ̄). This linear equation is zero over all
y ≥ x(θ̄) only if

( 


2

√
/σ − 



2
√

/σ′) � 0, which yields a contra-
diction. Now consider the case in which σ � σ′. Then we
must have λ �� λ̃. Cancelling out the common (1/(2σ))e




2

√
y/σ

terms on both sides of (A.1) and rearranging, we have∫
Θ
e−




2

√
x(θ)/σ f (θ|λ) − f (θ|λ̃)

( )
dθ � 0, which violates the

Aswani, Shen, and Siddiq: Incentive Design in Medicare Shared Savings Program
1022 Operations Research, 2019, vol. 67, no. 4, pp. 1002–1026, © 2019 INFORMS



assumption that
∫
Θ
e−




2

√
x(θ)/σ f (θ|λ) − f (θ|λ̃)

( )
dθ �� 0 for all

σ ∈ Σ and λ, λ̃ ∈ Λ. □

Proof of Corollary 1. Note that Θ � [θ,θ̄]. Let θ be fixed.
Pick some (λ, λ̃, σ) ∈ Λ × Λ × Σ such that λ �� λ̃, and suppose
that the following equality holds:∫

Θ

e−



2

√
x(θ)/σ f (θ|λ) − f (θ|λ̃)

( )
� 0. (A.2)

We first show that if (A.2) holds, then θ̄ is unique. Because
e−




2

√
x(θ)/σ and f (θ|λ) are both strictly positive, the equality∫

[θ1 ,θ2] e
− 



2
√

x(θ)/σ f (θ|λ) − f (θ|λ̃)
( )

dθ � 0 can only hold for an

interval [θ1, θ2] ⊂ R+ if f (θ|λ) and f (θ|λ̃) intersect at some
point in (θ1, θ2). Further, because f (θ|λ) and f (θ|λ̃) are ex-
ponential densities, they can intersect at most once over any
interval (θ1, θ2). Now suppose that there exist multiple values
of θ̄ such that (A.2) holds. Let θ̄1 and θ̄2 be twosuchvalues,where
θ̄1 <θ̄2. Then we have

∫
[θ,θ̄1] e

− 


2

√
x(θ)/σ

(
f (θ|λ)− f (θ|λ̃)

)
dθ � 0

and
∫
[θ,θ̄2] e

− 


2

√
x(θ)/σ f (θ|λ) − f (θ|λ̃)

( )
dθ � 0, which imply that∫

[θ̄1 ,θ̄2] e
− 



2
√

x(θ)/σ f (θ|λ) − f (θ|λ̃)
( )

dθ � 0 as well. This implies

that f (θ|λ) and f (θ|λ̃) intersect in both (θ,θ̄1) and (θ̄1,θ̄2),
a contradiction. Thus, there is at most one value θ̄ such that
(A.2) holds. Let this parameter be θ̄(λ, λ̃, σ). Because Λ and Σ

are discrete, there are a finite number of such θ̄(λ, λ̃, σ). Selec-
ting θ̄> supλ,λ̃∈Λ,σ∈Σ θ̄(λ, λ̃, σ) implies that (A.2) cannot hold
for any (λ, λ̃, σ) ∈ Λ × Λ × Σ, which yields the result. □

Proof of Proposition 5. For conciseness, let λ � (λ1, . . . , λm)
in what follows. Let ω(y|μ, λ, σ) be the savings density for an
ACOwith benchmark μ, given λ and σ. Letting+(λ, σ|μ, y) be
the likelihood function, we can write

+(λ, σ|μ, y) � ∏
n

i�1
ω(yi|μi, λ, σ)

� ∏
n

i�1

∫
Θ

ω(yi|μi, λ, σ, θ) f (θ|μi, λ, σ)dθ

� ∏
n

i�1

∫
Θ
g(yi − x(θ)|μi, λ, σ, θ) f (θ|μi, λ, σ)dθ

� ∏
n

i�1

∫
Θ
g(yi − x(θ)|μi, λ(μi), σ, θ) f (θ|λ(μi))dθ

� ∏
n

i�1

∫
Θ

g(yi − x(θ)|σ, θ) f (θ|λ(μi))dθ.

The first line follows by definition of the likelihood function
and the independence assumption given in Assumption 5.
The second line follows from conditioning on θ. The third line
follows from noting that y � x(θ) + ξ and rewriting the
savings distribution in terms of the shock density g. The
fourth line follows from noting that f (θ|μi, λ, σ) � f (θ|λ(μi))
because λ(μi) fully defines the type density of an ACO. The
final line follows by observing that yi − x(θ) depends only on σ
and θ (in addition to α and β, which are fixed throughout).
Taking the logarithm of both sides, we obtain

log+(λ, σ|μ, y) � ∑n
i�1

log
∫
Θ

g yi − x(θ)|σ, t( )
f t|λ(μi)( )

dθ
( )

,

as desired. □

Endnotes
1The MSSP is distinct (but not mutually exclusive) from the Bundled
Payments for Care Improvement (BPCI) Initiative, another recently
established Medicare program that incentivizes providers to reduce
the cost of healthcare delivery (CMS 2017b). The BPCI Initiative offers
Medicare providers a single reimbursement for “bundles” of healthcare
services received by a beneficiary during a single episode of care, in
lieu of reimbursing the provider for each individual service provided.
In contrast to the MSSP, participation in the BPCI Initiative does not
require the formation of an ACO or include financial bonuses in the
form of shared savings payments. Unlike the MSSP, the BPCI Ini-
tiative is relatively well studied in the operations management lit-
erature (Gupta andMehrotra 2015, Adida et al. 2016, Guo et al. 2016).
2To keep the the model tractable and amenable to estimation, we
assume that the provider’s service-related profit decreases with its
cost reduction efforts, but the profit margin itself remains constant
at γ. This is supported by the notion that the MSSP aims, in part, to
generate savings by reducing the total number of healthcare services
provided, meaning the average per-service profit margin will not
necessarily be impacted by the provider’s operational decisions.
3 In general, we assume that the ACO participates if its payoff is non-
negative. In our analysis, however, we shall use a stronger constraint
to guarantee that the ACO’s payoff is no less than it would be under
the existing MSSP contract (i.e., strictly positive). We impose this
stronger condition to restrict attention to contracts that improve
Medicare savings without leaving the ACO worse off.
4A limitation of our work is that our formulation of Medicare’s con-
tracting problem takes a single-period view of the MSSP. In a multi-
period setting, however, formulation OC-I implies that asymmetric
information regarding the ACO’s type may not persist after the first
period because the ACO is incentivized to immediately and truthfully
report its type. If the ACO’s type does not change, then the revelation
of the ACO’s type in the first period substantively changes the nature
of Medicare’s contracting problem in subsequent periods, which we
do not address in this paper.
5 In practice, the parameters Cu and |C� | are large relative to typical
ACO savings. According to existing MSSP guidelines, C� and Cu

are set at 15% and 20% of the ACO’s benchmark, respectively
(Federal Register 2011), whereas data released by the CMS show
that the majority of ACO savings and losses are within 5% of the
benchmark.
6The “optimal nonsubsidized contract” refers to the existing MSSP
structure under the optimal shared savings parameters α(θ), where
β(θ) � 0 for all θ ∈ Θ.
7Because we have only a single observation for each ACO, we cannot
estimate the type parameterθ for each individual ACO in the data set.
We therefore focus on estimating the distribution over ACO types in
aggregate. However, it may be possible to estimate the exact type
parameter for each ACO given multiple observations of the same
ACO over several years. This may be a potentially fruitful direction
for future analyses of the MSSP.
8We estimate the type distribution f (θ) by using the normalized per-
beneficiary savings of each ACO. In other words, to reduce model
complexity, we do not explicitly account for variation in ACO size
in the estimator. We instead capture variation in ACO size when
simulating contract performance by sampling the number of bene-
ficiaries along with other ACO attributes in the bootstrap.
9 In Section EC.3 of the online supplemental material, we consider an
extension whereby the threshold h is also optimized in addition to the
shared savings rate α and the subsidy rate β.
10Note that using a finer discretization for the contract and type space
may improve the performance of the contract by more tightly ap-
proximating the original optimal contracting problem. However,
because we formulate the optimal contracting problems as integer
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optimization models, the models become intractably large if the
discretization scheme is too fine. Note also that because of the dis-
cretization, our estimates of Medicare’s savings under the optimal
contract are likely to be conservative. The development of efficient
solution techniques for optimal contracting problems that are for-
mulated as large-scale integer optimization models may be a fruitful
direction for future work.
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