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Abstract

Problem definition: This paper investigates the impact of delivery performance on future cus-

tomer orders for an on-demand meal delivery service platform. We also identify factors (e.g., deliv-

ery driver’s local area knowledge and experience) that can affect delivery performance. Using our

results, we illustrate how one can develop an “order assignment policy” that can help a platform

to increase future customer orders.

Academic/Practical Relevance: Our intent is to identify the underlying factors and develop

an order assignment policy that can help an on-demand meal delivery service platform to grow.

Methodology: By analyzing transactional data obtained from an online meal delivery platform

in Hangzhou (China) over a two-month period in 2015, we examine the impact of meal delivery

performance on a customer’s future orders. Through a simulation study, we illustrate the impor-

tance of incorporating our empirical results into the development of a smarter “order assignment

policy”.

Results: We find empirical evidence that an “early delivery” is positively correlated with customer

retention: a 10-minute earlier delivery is associated with an increase of one order per month from

each customer. However, we find that the negative effect on future orders associated with “late
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deliveries” is much stronger than the positive effect associated with “early deliveries”. Moreover,

we show empirically that a driver’s individual local area knowledge and prior delivery experience

can reduce late deliveries significantly. Finally, through a simulation study, we illustrate how one

can incorporate our empirical results in the development of an order assignment policy that can

help a platform to grow its business through customer retention.

Managerial Implications: Our empirical results and our simulation study suggest that to

increase future customer orders, an on-demand service platform should address the issues arising

from both the supply side (i.e., driver’s local area knowledge and delivery experience) and the

demand side (i.e., asymmetric impacts of early and late deliveries on future customer orders) into

their operations.

Keywords: Startup Operations, Order Assignment, Delivery Performance, Operations Efficiency.

1. Introduction

As more people migrate from rural to urban areas to seek better job opportunities and living

conditions, the demand for convenient services continues to rise. At the same time, the advent of

real time location information systems and mobile payment systems has spawned various types

of online matching platforms1 such as Uber and Lyft that “enable individuals and/or entities

as buyers and sellers to transact (i.e., search and match) effectively and efficiently by employing

various internet-connected digital communication devices” (European Commission, 2016). Despite

their exponential growth, most online platforms are not yet profitable. For example, though Uber

launched its IPO in 2019 with over 91 million users, the platform has incurred a profit loss in

the billions (Franklin 2019). However, many investors support various innovative online platforms

because they care more about long-term growth than short-term profits (Clark 2019).

1 The reader is referred to Chen et al. (2018) for a comprehensive discussion about different types of on-line platforms.
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Outside of ride-hailing services, on-demand meal delivery platforms are experiencing an annual

growth rate of 9.3%. To get more online customers, many restaurants are partnering with food-

ordering and delivery platforms such as Grubhub (US), Deliveroo (UK), and Ele.me (China) to

capture office workers and consumers who are too busy to eat out or take out.2 By posting menus on

these platforms, participating local restaurants enable customers to place meal orders (to be picked

up and delivered by drivers). These platforms charge restaurants a commission fee based on the

value of each order. According to a Statista Report (2019), worldwide revenue of online food delivery

amounts to US$94,385 million, and China accounts for more than 42% of the worldwide revenue.

For example, Meituan (China), a publicly traded online food ordering and delivery platform, has

over 300 million registered members, 3.6 million registered restaurants, and 2.7 million delivery

drivers delivering 24 million meals in China on a daily basis.3

As more meal delivery platforms enter the market, they must compete on customer satisfaction

(e.g., meal delivery service) in order to retain existing customers and acquire new customers,

especially when the customer’s cost of switching is very low. While customer retention is caused

by higher customer satisfaction, which is affected by better service quality (Anderson et al. 2004,

Bolton and Lemon 1999, Bolton et al. 2006, Court and Vetvik 2009, Gomez et al. 2004, Morgan

and Rego 2006), it is unclear if these results hold in the context of online food delivery platforms

especially because, unlike most service operations that involve only two parties (customers and

servers), online meal delivery service platforms coordinate “three different parties”: on-demand

customers who place orders from restaurants with listings on the platform, independent restaurants

(who prepare meals for those online customers as well as their own dine-in customers), and delivery

2 In 2018, McDonald’s partnered with Uber Eats, and Dunkin’ partnered with DoorDash.

3 According to Statista Report (2019) https://www.statista.com/outlook/374/100/online-food-delivery/

worldwide, China is the biggest market (US$39,888m), followed by the United States (US$19,472m), India

(US$7,092m), the United Kingdom (US$3,810m) and Germany (US$2,083m).
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drivers with different local area knowledge and experience (who need to travel to restaurants to

pick up the orders and then deliver the orders to customers assigned by the platform). These

observations, along with the importance of future revenue growth for online platforms (as discussed

earlier), have motivated us to study the following two research questions:

1. What is the impact of an early (or a late) meal delivery on a customer’s future orders?

2. What is the impact of the driver’s local area knowledge (i.e., delivery location familiarity) and

experience (i.e., meal delivery experience) on the earliness (or lateness) of a meal delivery?

We also learned from industry leaders that different meal delivery platforms use in-house algorithms

to “assign” orders to drivers to minimize average delivery time by incorporating different factors.4

However, these platforms have not yet taken the drivers’ experience and local area knowledge or

the asymmetric effect of early/late delivery into consideration when assigning orders to drivers.

This observation motivates us to examine the third research question:

3. How should a platform assign customer orders (associated with different restaurant locations

and customer locations) to drivers (with different local area knowledge, delivery experience, and

physical locations) in order to effectively increase a customer’s future orders?

We examine the first two questions by analyzing transactional data from 40,786 meal orders

provided by a Chinese online meal delivery platform that occurred between July 1 and August 31,

2015 in Hangzhou, China.5 To examine our first research question, we develop an “additive hazard

model” to estimate each customer’s future order; this, however, can be unobservable because such

an order may occur after our observation period.6 Our empirical analysis reveals that early deliveries

4 Factors include the physical distance between the restaurant and the customer’s location, the popularity of a

restaurant, peak hours, and weather conditions.

5 Our data includes information about customer order placement time, required (or promised) delivery time for each

order, driver assignment time, meal pick-up time, meal delivery time, customer location, driver characteristics (local

area knowledge and delivery experience) and restaurant characteristics (price, location, etc.).

6 We also implement a method (akin to the two-stage least square method) to deal with potential endogeneity issues

through multiple instrumental variables (IVs). We also control for variables including weather, traffic congestion,
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can increase a customer’s future orders: delivering a meal 10 minutes earlier than expected can

increase a customer’s future demand by 1.03 orders per month. We also discover an “asymmetric

effect” of early versus late deliveries. An earlier delivery can boost a customer’s future orders

slightly: 10 more minutes earlier on an early delivery can increase a customer’s future orders by

0.74 orders per month. However, a late delivery can reduce a customer’s future orders significantly:

being 10 more minutes late on a late delivery can reduce a customer’s future orders by 2.70 orders

per month.

To examine the second question, we develop a regression model that incorporates various control

variables. We find that a driver’s local area knowledge and delivery experience can have significant

impacts on delivery time. Specifically, we find that a driver who has 30 days additional work expe-

rience can reduce delivery time by 5.10 minutes per order, and a driver with local area knowledge

can decrease delivery time by 3.33 minutes per order.

Using the results associated with the first two questions (i.e., the asymmetric effect of early/late

deliveries and the effect of driver’s local area knowledge and experience), we examine the third

question by developing an “order assignment algorithm” that can help the platform to increase

its future customer orders. Specifically, we first develop three different order assignment policies.

The first policy is a benchmark that focuses on minimizing delivery distance, but it does not

take the driver’s knowledge and experience or the asymmetric impact of early/late deliveries into

consideration. The second policy minimizes delivery time by utilizing the result of our second

question (which takes the impact of the driver’s local knowledge and experience into consideration

regarding delivery time). The third policy utilizes our results from both the first and the second

questions to maximize a customer’s future orders (as a function of delivery performance), where

time periods, restaurants, and driver-specific characteristics. Our robustness checks and other tests such as weak-IV

(Stock and Yogo 2002) and the effective F-value (Olea and Pflueger 2013) provide support for the appropriateness of

our approach.
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the delivery performance depends on the driver’s knowledge and experience. We evaluate the

performance of these three policies via a simulation study.7 Our simulation study suggests that

the third policy can increase orders by 0.024 per customer per day (or 0.72 per month) than the

second policy and by 0.0369 more orders per customer per day (or 1.107 per month) than the first

policy.

In summary, our analysis yields three key findings. First, we find empirical evidence that faster

meal delivery time can enable an online meal delivery service platform to generate more future

orders from existing customers. Second, we find an asymmetric effect: early deliveries can increase

future orders, but late deliveries can severely reduce future orders. Third, we show that an efficient

way to assign orders to drivers is to take delivery drivers’ knowledge and experience into account

along with the asymmetric impacts of early and late deliveries.

Our empirical and simulation findings have several managerial implications. First, to increase a

customer’s future orders, a platform’s order assignment algorithm should take the driver’s local area

knowledge and delivery experience into consideration. Second, as the platform grows its business

by hiring many new drivers, there will be an inherent heterogeneity among drivers in terms of

knowledge (familiarity with different locations) and experience (familiarity with the pick-up and

delivery operations). However, the platform can leverage various emerging information technologies

including indoor position and navigation systems that can suggest the most efficient indoor route

for drivers to deliver their orders quickly.8 By using these smart apps that facilitate knowledge-

7 Our simulation study samples random orders during peak hours from our data set. Following the common practice

that orders are assigned intermittently (e.g., every 5 minutes), we first generate a batch of random samples of customer

orders and a random sample of driver locations across the 5-minute time window from our data set. We then assign

these orders to different drivers according to those three aforementioned assignment policies.

8 Some indoor locating and positioning technologies require smart sensors to be installed within some commercial

buildings. For example, Here.com is one of the leading companies that develops indoor tracking and positioning smart

apps. However, the development of an indoor position system for customers who are located in different buildings
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and experience-sharing among different drivers, the platform can reduce their meal delivery time

even further. Third, by noting that the impacts of early versus late deliveries on future customer

orders are asymmetric, a smarter order assignment should strike the right balance between early

and late deliveries (instead of focusing purely on shortest meal delivery time).

This paper is organized as follows. Section 2 reviews relevant literature and Section 3 describes

our data. Section 4 analyzes our first and second research questions. Specifically, we examine how

an early (or late) delivery affects future customer orders and how a driver’s local area knowledge

and delivery experience affect delivery time. We then develop and compare three order assignment

policies though a simulation study in Section 5. Section 6 concludes the paper.

2. Literature Review

The operational issues arising from online platforms have drawn significant interests from opera-

tions management researchers (Chen et al. 2018, Hu 2019, Benjaafar and Hu 2019). There are two

main mechanisms with which a platform can coordinate supply and demand. Bai et al. (2018),

Cachon et al. (2017), Taylor (2018), Chen and Hu (2019) explore different pricing mechanisms. In

addition to pricing, an assignment mechanism (or dispatch mechanism) is an alternative way to

improve the efficiency of a platform. The classical dispatch policy is to match customers and drivers

based on the closest distance (Lyu et al. 2019, Ozkan and Ward 2019). Recently, researchers have

investigated the dispatch policy from various perspectives. Using data from Didi Chuxing, Wang

et al. (2017) consider the stable matching problem for order dispatching. Chu et al. (2018) provide

can be extremely costly. As an alternative, the platform can capture different (actual) indoor routes from their own

drivers by collecting successive snapshots from the drivers’ mobile device cameras. By using these indoor snapshots,

one can build a database of images that is suitable for estimating a location in a venue. Once the database is built,

a mobile device moving through the venue can take snapshots that can be interpolated into the venue’s database,

yielding location coordinates. These coordinates can be used in conjunction with other location techniques for higher

accuracy. By using various learning algorithms, it is possible for the platform to develop smart apps that can help

drivers with limited knowledge and experience to deliver orders to indoor locations faster.
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a novel approach to the order announcement mechanism to reduce the drivers’ gaming behavior.

Hu and Zhou (2019) enumerate sufficient conditions for the optimal dispatching policy to possess

a priority hierarchy structure. Ozkan and Ward (2019) propose a continuous linear programming

approach and prove its asymptotical optimality in a large market. Lyu et al. (2019) use online con-

vex optimization by incorporating different metrics for order dispatching. We note that Xu et al.

(2018), Zhang et al. (2017) use machine learning techniques to develop different large scale order

dispatch policies to improve different performance metrics (profit, order acceptance rate, customer

wait time, etc.). More broadly, our work also belongs to the field studying last mile delivery, which

is within the scope of smart city operations (Mak 2018a, Qi and Shen 2019). Qi et al. (2018) inves-

tigate the scalability issues of applying shared mobility to solve last mile delivery problems. Mak

(2018b) explores the benefit of utilizing in-store customers to deliver orders for online customers

for last mile urban delivery.

Our work is related to empirical studies of delivery’s impact on demand. In the B2C environment,

delivery speed is one of the most important service measures. Fisher et al. (2019) identify a four

percent demand increase from affected consumers after a leading U.S. apparel retailer opened a

new distribution center to shorten its delivery time. Cui et al. (2019) show that the removal of a

high-quality logistics provider, namely, SF Express, would result in a 14.56% sales reduction for

the Alibaba platform. Luo et al. (2019) show that logistics information provided through different

means, such as word of mouth, claimed inventory availability and store location, have different

impacts on the sales of cameras and mobile phones on the Alibaba platform. In addition, delivery

performance also plays a critical role in the B2B environment. Peng and Lu (2017) show that

different types of customers, such as trade customers and original equipment manufacturers, value

delivery performance metrics differently.

Our paper is different from the above literature in the following areas. First, we study the impact

of delivery performance on future customer orders in the context of online meal delivery services.

8

 Electronic copy available at: https://ssrn.com/abstract=3469015 



Second, we investigate the impact of driver’s knowledge and experience on delivery performance,

and we find empirical evidence that shows early versus late deliveries have asymmetric effects on

future orders. Third, our simulation study indicates that incorporating this asymmetric effect into

the development of an order assignment policy that matches customer orders (restaurant locations

and customer locations) and drivers (driver locations) can help a platform to increase customer

retention.

3. Data Description

We collected our data from a large Chinese online meal delivery platform based in Hangzhou

(China) over a two-month period (from July 1 to August 31, 2015). This platform used full-time

employees as delivery drivers to perform pick-up and delivery operations in Hangzhou throughout

our sample time period. The raw data captures the chronicle of each customer order, which begins

at the moment a customer places an order and ends at the moment the assigned driver delivers the

order to the customer’s location. Specifically, we have real-time information about customer order

placement time, platform dispatch time (the time at which a meal order is assigned to a driver),

driver receipt time (the time at which a driver confirms the order assignment), meal pick-up time

(including the time when the driver arrives at the restaurant and the time when he leaves the

restaurant with the assigned meal order), and order delivery time. Figure 1 depicts the distribution

of orders placed during different hours on a typical day, indicating that the “noon period” (10 a.m.-

1 p.m.) is the peak period.

3.1. Dependent Variable: Future Order

The dependent variable of interest is the customer’s future order (which is a measure of customer

retention), and it is “estimated” from the time elapsed between the current order and the next

order. Specifically, we define Durationi as the estimated time elapsed (measured in days) between

the current order i and the next order placed on the platform by the same customer. However,

due to the limitations of the time span of our dataset, we cannot observe the actual time of the
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Figure 1 Number of orders received across different hours

next order for some orders. For example, for those orders placed close to the end of our observation

period, the next order would likely occur after our observation period. As a result, to construct the

duration time, we define Durationi as the interorder time and define δi as the censoring indicator.

Specifically, we define Durationi = tnext(i)− ti, where ti stands for the time that order i was placed,

and tnext(i) denotes the time of the next order placed by the same customer. If no order is observed

by the end of the observation period T , we set tnext(i) = T . Additionally, we define δi = 1 if the next

order is not observed before T , otherwise δi = 0.

3.2. Independent Variable: Time Gap

We are interested in a key independent variable, TimeGapi, which measures the time difference

(in minutes) between the delivery time (the time at which order i is delivered to a customer) and

the “required time” (the time at which this customer expects to receive the order i). There are

two types of required time, depending on the order type. First, for a “reserved” order, the required

time is the expected delivery time specified by the customer when she placed the order. Second,

for an on-demand order (i.e., a “nonreserved” order), the required time is the “estimated” delivery

time estimated by the platform, taking order placement time, restaurant (e.g., meal preparation
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time) and travel distance into consideration.9 Based on our discussion with the management of

the platform, the required time is reported to the customers truthfully according to the estimated

delivery time. This is because if the reported required time is shorter than the estimated delivery

time, the platform will face a higher risk of having a late delivery that can negatively affect customer

retention. Additionally, if the reported required time is longer than the estimated delivery time,

the platform will face a higher risk of losing an order (order cancellation), which can negatively

affect customer acquisition.

Figure 2(a) displays the distribution of the required time interval, i.e., the time interval between

the required time and the order placement time. Except for reserved orders (which are placed

at least one hour before the platform dispatches orders to drivers), 77.12% customers (in our

two-month period sample data) were promised they would receive their meal within one hour

after placing an order on the platform. Moreover, by calculating the time difference (between the

order finishing time and required time), it can be observed that a nonpositive value of TimeGapi

represents an on-time or early delivery, in which case the customer receives the order before her

required time. A positive value of TimeGapi reflects a late delivery, in which case the customer

receives the order later than her required time. Figure 2(b) shows the distribution of the time gap

of orders across the whole sample, in which 50.17% are on-time or early deliveries, and the other

49.83% are late deliveries. This observation verifies that the platform reports the required time by

using the mean (i.e., the estimated delivery time), as explained earlier.

9 Since our dataset did not record which orders were reserved, we define a reserved order as an order that is placed

at least one hour before the platform dispatches this order to a driver. For example, if a customer places an order at

8 a.m. with a required receipt time of 11 a.m., the platform will only begin to dispatch this order (to a driver) at 10

a.m., which is two hours later than the time at which the order was placed (8 a.m.). We shall classify this order as a

reserved order. The measurement, which defines 5.11% reserved orders, is based on dispatch time because it reveals

how the platform considers whether an order is urgent or not.
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(a) Distribution of required time interval (b) Distribution of time gap

Figure 2 Distribution of Required Time Interval and Time Gap

3.3. Control Variables

Our model includes various control variables that captures different characteristics of different

orders and restaurants together with traffic congestion and weather conditions (temperature).

Order characteristics include price of order, distance (between restaurant and customer locations),

and whether the order is a reserved order. Additionally, we include a variable OutstandingOrderi

to denote the number of on-hand orders processed by a driver (i.e., driver’s utilization) when order

i is assigned to the driver. In addition, because we do not have the exact information about the

travel distance between restaurant and customer locations, we use the longitudes and latitudes

associated with the addresses of restaurants and customers recorded in our data to estimate the

travel distance between the restaurant and the customer location associated with order i and call

it Distancei, where:

Distancei = 110.574×|CLAi−RLAi|+111.320×|CLOi−RLOi|×cos

(
π(CLAi +RLAi)

360

)
, (1)

CLAi and RLAi are order i’s customer address and restaurant address latitudes, and CLOi and

RLOi are order i’s longitudes for customer address and restaurant address, respectively.10

10 The formula we adopt is the spherical earth surface formula, which is commonly used in empirical stud-

ies. The parameters for this calculation are available from the U.S. National Geospatial Intelligence Agency at

https://msi.nga.mil/MSISiteContent/Staticiles/Calculators/degree.html.

12

 Electronic copy available at: https://ssrn.com/abstract=3469015 



Our control variables include the restaurant’s characteristics. Specifically, we incorporate the

stay time ResStayi, which captures the time a driver spent at the restaurant waiting for order

i. The stay time captures the restaurant’s efficiency; a short stay time suggests the restaurant

is efficient and the driver does not need to wait long to pick up her order. We also include the

coefficient of variation of the number of historical orders for the restaurant, i.e., CV ResOrders.

The coefficient of variation characterizes the variability of the number of orders that the restaurant

faces; a smaller coefficient of variation indicates a more stable number of orders that the restaurant

receives everyday. In addition, the controls vector includes the traffic congestion level11 at the

moment when the driver picks up her order, outside temperature, two dummy variables associated

with peak periods (i.e., 10 a.m.-1 p.m. and 5 p.m.-7 p.m.), and weekday dummy variables.

3.4. Driver’s Local Area Knowledge and Delivery Experience

While we are interested in examining the impact of a driver’s delivery experience and local area

knowledge on early and late deliveries (relative to the required time), the driver’s job start date is

not available in our database. To overcome this shortcoming, we use the date (5 July 2015) as a

cutoff date so that, if a driver appears in our database before 5 July, 201512, we define this driver

as an “existing driver”; otherwise, we classify this driver as a “new driver”. To avoid potential bias,

we use only orders delivered by new drivers in our analysis. Specifically, by defining the first day

when each new driver appears in our database as his “start” date, the experience of a new driver

associated with order i; i.e., Experiencei, is measured according to the number of days elapsed

11 The congestion level (0 to 10) is provided by the Government of Hangzhou, and it is based on weighted travel

time associated with different segmented distances under current traffic conditions. More details can be found at

http://jtw.beijing.gov.cn/ysj/xxgk/flfg/r764/201111/P020141111625117643012.pdf.

12 The time between two orders delivered by the same drivers is less likely to exceed 5 days because they are full-time

employees. Thus, if our data shows no record for the driver before 5 July, 2015, this driver is considered as a new

driver. Robustness checks of other cutoff dates such as 3 July, 4 July and 6 July for the following analysis lead to the

same results.
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between his start date and the date when order i took place. Associated with each order i, we

define each driver’s local area knowledge; i.e., Locali, as a dummy indicator variable. We set the

value to 1 if the driver has visited the neighborhood within 200x200 square meters of the location

associated with order i during prior meal deliveries as shown in our database; otherwise, we set

the value to 0. Eventually, we arrive at the final data set for our analysis, which is based on 40,786

meal orders delivered by 161 new drivers over a two-month observation period.

3.5. Summary Statistics

Table 1 reports the summary statistics of our data, and Table A1 (in the Appendix) provides the

definition of variables.

4. Empirical Analysis

We begin by examining our first research question: What is the impact of an early (or late) meal

delivery on a customer’s future orders? However, due to various omitted or unobserved factors (e.g.,

promotion activities conducted by restaurants/platforms), we cannot directly establish a causal

relationship between early (or late) deliveries and future customer orders. To address the potential

issue of endogeneity, we identify two instrumental variables (IVs), i.e., driver’s local area knowledge

(i.e., delivery location familiarity) and experience (i.e., meal delivery experience), and we conduct

a two-stage analysis by incorporating these two IVs.

Our first stage analysis, to be presented in Section 4.2, entails the validation of instrumental

variables and their roles in our second research question regarding the impact of the driver’s

knowledge (i.e., delivery location familiarity) and experience (i.e., meal delivery experience) on

the earliness (or lateness) of meal deliveries. By studying the second research question, we can

understand the impact of driver heterogeneity on time gap.

In addition, the result of the second research question will serve as our first-stage estimation of

Time Gap with IVs (for the first research question). Armed with this estimated value of Time Gap,

we proceed to the second-stage estimation, which involves an additive hazard model, in Section

4.3. Through this hazard model, we can investigate our first research question by establishing the

causality between early (or late) meal deliveries and future customer orders in Section 4.5.
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Table 1 Summary Statistics

Variables Mean Standard deviation Min Max

Duration (days) 3.02 5.03 0 51

Indicator of censoring 0.71 0.45 0 1

Time gap between finished time
-1.21 17.49 -187.57 230.47

and required time (minutes)

Stay time in restaurant (minutes) 5.79 7.42 0 94.52

Number of Outstanding Orders 0.70 0.84 0 4

Average number of daily orders
16.76 24 0.02 104.34

in each restaurant

Standard deviation of the number of
5.43 5.84 0.13 27.39

daily orders from each restaurant

Coefficient of variation of the
0.57 0.42 0.20 7.87

number of orders from each restaurant

Price of an order (Yuan) 60.50 47.30 0 1505

Distance between restaurant and customer (kms) 1.63 1.14 0 12.59

Congestion level 2.6 1.13 0.42 8.44

Temperature (Celsius) 30.23 3.83 18 39

Driver’s delivery experience (days) 17.14 12.05 1 55

Driver’s local area knowledge 0.48 0.5 0 1

Number of Observations

Customers 20,591

Drivers 161

Restaurants 1,439

Total Orders 40,786

Reserved orders 2,338

On-time/early-delivery orders 20,463

4.1. The Impact of Delivery Performance on Future Orders

4.1.1. A Preliminary Analysis Before we present the aforementioned two-stage analysis,

let us first conduct a “preliminary analysis” of delivery performance and future customer demand.

To address the concern about those unobserved future orders that may occur after our two-month
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observation period, we use a survival analysis associated with the hazard rate of time duration for

customers to place the next order on the platform as our response variable. Specifically, we apply

an additive hazard model as our base model (Aalen 1989), which is known to be more flexible

than the proportional hazard model, to incorporate transformations as well as time-dependent

covariates. Specifically, our additive hazard model can be expressed as:

h(t|TimeGapi,Xi) = α(t) +β(t) ·TimeGapi +γ(t) ·Xi. (2)

Here, h(t|TimeGapi,Xi) is the hazard rate, which characterizes the “instantaneous probability” of

placing another order at time t. TimeGapi is the time gap between order i and the next order placed

by the same customer. The vector Xi are control variables associated with order i, as described

in Section 3.3 (e.g., price, distance, congestion level, temperature, categorical indicator (whether

it is a reserved order), time and weekday dummy variables). Notice that for ease of exposition,

we do not include unobserved variables in the above hazard model. However, the complete model

addressing unobserved variables is described in Appendix A2.

Table 2 displays the estimated value of our coefficients associated with β(t) and γ(t). As indi-

cated, TimeGapi has a significantly negative effect on a customer’s tendency to place a future order.

In other words, the earlier the order arrives, the more frequently a customer will place the next

order. Specifically, since the time gap is measured in minutes, if the delivery time is shortened by

10 minutes, the “instantaneous probability” (of the next order) increases by 0.00026 ∗ 10 = 0.0026

per customer per day, which corresponds to an increase of 0.078 orders per customer per month. In

addition, we apply MacFadden’s Pseudo R2, proposed by McFadden et al. (1973), to measure the

overall goodness of fit for the additive hazard model. This method employs an iterative maximum

likelihood estimation process (unlike OLS). In addition, the Pseudo R2 gives a value of 0.27, which

indicates a good fit.13

13 Louviere et al. (2000) propose a goodness-of-fit using McFadden’s Pseudo R2 for fitting the overall model. Because

MacFadden’s Pseudo R2 is considerately lower than the traditional R2 index, McFadden suggests values between 0.2

and 0.4 should be taken to represent a good fit of the model.
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Table 2 Survival Analysis of Customer Future Orders (without IVs)

coefficient z p

Intercept 0.247*** 15.086 <0.01

T imeGap −0.00026∗∗∗ -3.548 <0.01

Num Orders -0.005** -1.961 0.050

ResStay -0.0002 -1.011 0.312

Distance 0.029*** 13.974 <0.01

Price 1.16E-05*** -33.463 <0.01

Congestion 0.005** 2.335 0.020

Temperature 0.002** 2.218 0.027

ReservedTrue 0.022 0.669 0.503

CV ResOrders 0.109*** 17.112 <0.01

Monday 0.017* 1.709 0.087

Tuesday 0.013 1.406 0.160

Wednesday 0.017* 1.931 0.054

Thursday 0.003 0.285 0.776

Saturday -0.018*** -3.169 <0.01

Sunday -0.049*** -7.296 <0.01

10 A.M. 0.028*** 4.158 <0.01

11 A.M. 0.017*** 2.916 <0.01

12 A.M. 0.008 1.167 0.243

1 P.M. 0.012 1.429 0.153

5 P.M. -0.005 -0.214 0.830

6 P.M. -0.002 -0.175 0.861

7 P.M. 0.031*** 3.331 <0.01

Observations 40,786

McFadden Pseudo R2 0.27

∗: p < 0.1; ∗∗: p < 0.05; ∗∗∗: p < 0.01

4.1.2. Endogeneity Issue and Instrumental Variables Although we observe a significant

effect of TimeGapi on a consumer’s future orders, as estimated in Equation (2), we cannot infer a

causal relationship between these two variables. Additionally, the estimated coefficient of TimeGapi
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can be biased. This is because there are some omitted or unobserved factors that may affect a

customer’s future orders and the time gap simultaneously. For example, we do not have information

about promotional activities launched by the platform or restaurants (e.g., special, limited-time

discounts; discount coupons for placing next orders; and new restaurant menus) that can largely

stimulate consumers to place more future orders. As more orders are triggered by these unobservable

factors, driver utilization can increase significantly, which can increase the time gap.

To tackle this endogeneity issue, we incorporate two instrumental variables in the survival analy-

sis, as illustrated in Equation (2), and construct a two-stage survival analysis (akin to the two-stage

least square regression model). In the first stage, we regress IVs and other controls on TimeGapi

by using a simple OLS model. In doing so, we obtain the estimated TimeGapi for each order i. In

the second stage, we regress the “estimated” TimeGapi (obtained from the first stage) and other

controls on Durationi applying a similar additive hazard model to Equation (2).14

We use driver’s experience (Experiencei) and local area knowledge (Locali) as our instrumental

variables (IVs). It is known that a good IV should be correlated with the instrumented independent

variable (i.e., TimeGapi), and it should be uncorrelated with the dependent variable (i.e., future

customer order) with all current covariates being controlled. For the first sign of a good IV, also

known as the “relevant condition”, we can show a significant correlation between the performance

of a driver, measured by delivery time gap, and his local knowledge as well as experience in our

first-stage estimation (in section 4.2). It is intuitive that local knowledge and delivery experience

can help drivers to become more familiar with the delivery process and navigating, which can

effectively shorten the time gap. Second, we argue that Experiencei and Locali satisfy the “exclu-

sive condition”, resolving the second condition of a good IV. Customers cannot observe a driver’s

Experiencei and Locali, especially when the driver is assigned to an order by a platform that

14 Appendix A2 provides a proof about unbiased estimation of the survival model when instrumental variables are

incorporated.
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currently does not take a driver’s Experiencei and Locali into consideration in assigning orders

and providing the required time estimation. Therefore, consumers’ belief on both delivery time

and required time will not be updated according to a driver’s Experiencei and Locali.
15 Specifi-

cally, the correlation coefficient between future orders and IVs are 0.11 and 0.09, respectively (for

Experiencei and Locali). Hence, we can conclude that the exclusive condition is also satisfied for

these two variables (i.e., local area knowledge and experience) to be selected as valid IVs.

4.2. First Stage Estimation: The Impact of Driver’s Characteristics on Time Gap

As explained earlier, our analysis entails a two-stage estimation process. Our first stage estimates

the time gap by including two instrumental variables (i.e., driver’s local area knowledge and delivery

experience) and other control variables via a simple linear regression model as follows.

TimeGapi = β0 +β1Experiencei +β2Locali +β3Distancei +β4Pricei

+β5Reservedi +β6ResStayi +β7CV ResOrdersi +θ ·Controli + εi.

(3)

Table 3 presents our results for five different variants of the model described in Equation (3), where

different variants are associated with different control variables. Specifically, in Model 1, we observe

that the coefficients of both delivery experience and local area knowledge are significantly negative;

an extra 10 days of work experience leads to a 1.5 minute reduction in time gap. In addition, a

driver with local area knowledge results in a decrease of 3.25 minutes in time gap. For the other

variables, distance and outstanding orders have significantly positive effects, and reserved order

has a negative effect on time gap, while price has little effect (though it is significant) on time gap.

Model 2 extends Model 1 by incorporating restaurant characteristics, and the results are consistent.

In addition, the result shows that waiting time spent in a restaurant and the coefficient of variation

15 Some variables including outstanding orders and waiting time at the restaurant are also not observed by customers.

However, the value of these variables tends to increase when the demand exceeds the supply. Therefore, if the value

of these variables changes, a customer’s expectation about required time will be affected because the customer can

anticipate the system load.
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Table 3 OLS Regression of Driver’s Delivery Time Gap with embedded IVs

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) −6.72 (0.21)∗∗∗ −9.59 (0.24)∗∗∗ −9.96 (0.29)∗∗∗ −3.70 (0.76)∗∗∗ −4.02 (0.78)∗∗∗

Experience −0.15 (0.01)∗∗∗ −0.16 (0.01)∗∗∗ −0.16 (0.01)∗∗∗ −0.17 (0.01)∗∗∗ −0.17 (0.01)∗∗∗

Local −3.25 (0.17)∗∗∗ −3.34 (0.17)∗∗∗ −3.37 (0.17)∗∗∗ −3.34 (0.17)∗∗∗ −3.33 (0.17)∗∗∗

OutstandingOrders 8.32 (0.09)∗∗∗ 8.97 (0.09)∗∗∗ 8.70 (0.11)∗∗∗ 8.75 (0.11)∗∗∗ 8.70 (0.11)∗∗∗

Distance 1.33 (0.08)∗∗∗ 1.31 (0.08)∗∗∗ 1.30 (0.08)∗∗∗ 1.31 (0.08)∗∗∗ 1.30 (0.08)∗∗∗

Price 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗

ReservedOrder −4.30 (1.71)∗ −4.40 (1.68)∗∗ −4.00 (1.68)∗ −3.92 (1.68)∗ −3.81 (1.68)∗

ResStay 0.39 (0.01)∗∗∗ 0.40 (0.01)∗∗∗ 0.40 (0.01)∗∗∗ 0.40 (0.01)∗∗∗

CV ResOrders 1.93 (0.18)∗∗∗ 1.83 (0.18)∗∗∗ 1.81 (0.18)∗∗∗ 1.80 (0.18)∗∗∗

10 A.M. −1.53 (0.28)∗∗∗ −1.61 (0.28)∗∗∗ −1.55 (0.28)∗∗∗

11 A.M. 1.14 (0.28)∗∗∗ 0.94 (0.29)∗∗ 0.98 (0.29)∗∗∗

12 P.M. 1.10 (0.30)∗∗∗ 1.06 (0.31)∗∗∗ 1.08 (0.31)∗∗∗

1 P.M. −0.91 (0.36)∗ −0.72 (0.36)∗ −0.71 (0.36)∗

5 P.M. 1.08 (0.29)∗∗∗ 1.27 (0.30)∗∗∗ 1.44 (0.31)∗∗∗

6 P.M. 2.39 (0.30)∗∗∗ 2.44 (0.32)∗∗∗ 2.66 (0.32)∗∗∗

7 P.M. 2.21 (0.37)∗∗∗ 1.79 (0.37)∗∗∗ 1.84 (0.37)∗∗∗

Congestion −0.26 (0.09)∗∗ −0.35 (0.09)∗∗∗

Temperature −0.18 (0.02)∗∗∗ −0.16 (0.02)∗∗∗

Weekday FE No No No No Yes

Observations 40,786 40,786 40,786 40,786 40,786

Adj. R2 0.24 0.35 0.40 0.42 0.42

Note: Numbers in brackets are standard deviations for the corresponding parameter estimates.

∗: p < 0.1; ∗∗: p < 0.05; ∗∗∗: p < 0.01

(i.e., variable of CV ResOrders – variability of the number of orders that the restaurant has to

handle) can increase time gap.

For Models 3, 4 and 5, we examine the hour effect, because orders tend to surge during peak

hours (10 a.m.-1 p.m. and 5 p.m.-7 p.m.). We can observe from Table 3 that the results associated

with Models 3, 4 and 5 are consistent with Models 1 and 2. In addition to that, we find that the

time gap tends to be higher during peak hours.
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In summary, by examining the results associated with all five models shown in Table 3, we can

conclude that a driver’s delivery experience as well as his local area knowledge can reduce the

time gap through faster delivery services even if meal delivery service is considerably simpler than

other services or activities (see the analysis of experience for banks (Staats and Gino 2012) and

project management (Calvo et al. 2019). These results answer our second research question about

the impact of driver’s local area knowledge and experience on the earliness of a meal delivery.

4.3. Second-Stage Estimation: The Impact of “Estimated” Time Gap on Future
Customer Orders

While all models in Table 3 are based on the linear regression model as stated in (3), we use

Model 5 as our first stage estimation of the time gap measure for our second stage estimation

of a customer’s future orders via the additive hazard model, as previously explained. To do so,

let us denote order i’s “estimated” time gap TimeGap Fiti as estimated by Model 5. Then, we

replace the independent variable TimeGapi with TimeGap Fiti in our hazard model, as stated

in Equation (2), and re-estimate the corresponding coefficients. Denote the instrumental variable

vector as Z, and we can conduct this estimation by applying the following additive hazard model

conditional on Z, which was proposed in a survival context by Tchetgen et al. (2015), i.e.,

h̃(t|Xi,Z) = α̃(t) + β̃(t) ·TimeGap Fiti + γ̃(t) ·Xi. (4)

Because of the incorporation of instrumental variables, coefficient estimations of β̃(t) and γ̃(t)

are different from those associated with our base model as stated in Equation (2) (without the

inclusion of any IVs). This second-stage estimation enables us to measure how the “estimated”

time gap based on Model 5 affects a customer’s future orders; this is intended to answer our first

research question. Notice that in the estimation due to the additional uncertainty generated from

the estimation of TimeGap Fit in the first-stage regression of Equation (3), we apply nonparamet-

ric bootstrap (Efron and Tibshirani 1994) to obtain more accurate estimates of standard errors

together with p-value in the second-stage Equation (4).
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By using “full sample” data that includes both early and late deliveries (labeled as Full-Sample),

Table 4 (Full Sample) shows the result of our estimation of β̃(t) and γ̃(t). Akin to our base

model (without IVs) as shown in Table 2, Table 4 (Full Sample) implies that the “estimated” time

gap TimeGap Fit (based on Model 5 with two embedded IVs) continues to have a significantly

negative effect on future customer orders. More importantly, we find a much stronger effect than

before: delivering a meal order 10 minutes before the required time can create an increase of

0.0344(0.00344 ∗ 10) orders per customer per day, which corresponds to an increase of 1.03 orders

per customer per month.

To put our results into perspective, let us consider Meituan’s meal delivery service. In the

second quarter of 2019, Meituan processed 2.085 billion orders16 for 44.19 million monthly active

consumers17 and generated a revenue of $1.86 billion. By using these figures, we can estimate the

value created by reducing time gap by 10 minutes through faster delivery services thereby leading to

one extra order per customer per month. The associated increase in future orders can be translated

into a $121.81 (44.19 ∗ (1.86/2.085) ∗ 1.03 ∗ 3) million increase in revenue on a quarterly basis.

4.4. Validity of Instrument Variables

To justify the validity of our choice of IVs, we conduct three different tests. The first Hausman

test (Hausman 1978) gives a p-value less than 0.1%, indicating the existence of endogeneity. This

finding also indicates that we should not apply our base model as stated in Equation (2) as the

coefficient estimates are biased. Second, we test for weak instruments. The first-stage F-value is

517.1, much greater than the basic rule-of-thumb value of 10 or 19.93, which is the 5% critical value

proposed by Stock and Yogo (2002). Thus, we can reject the null hypothesis that the instruments

of local experience and work experience are weak; this then favors the alternative hypothesis that

these IVs are strong. In addition, the robustness check using the effective F-value proposed by

16 http://meituan.todayir.com/attachment/201908231717191783443873_en.pdf

17 http://boyue.analysys.cn/view/article.html?articleId=20019271&columnId=8
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Table 4 Survival Analysis of Future Customer Orders with embedded IVs

Full−Sample Early−Delivery Late−Delivery

coefficient z coefficient z coefficient z

Intercept 0.205*** 12.300 0.213*** 6.800 0.179*** 3.610

T imeGap Fit −0.00344∗∗∗ -4.540 −0.00246∗∗∗ -2.880 −0.00978∗∗∗ -2.540

Num Orders 0.019*** 2.600 2.28E-04*** -0.234 0.026*** 1.960

ResStay 0.001** 2.000 3.84E-04** -0.131 0.003** 2.830

Distance 0.034*** 14.300 0.029*** 8.990 0.036*** 10.900

Price 0.000*** -29.900 -9.45E-06*** -19.400 -1.43E-05*** -26.400

Congestion 0.004* 1.840 0.001* 0.499 0.006* 1.740

Temperature 0.002** 2.270 0.003** 3.260 0.001** 0.516

ReservedTrue 0.014 0.533 0.133 1.120 -0.055 -0.377

CV ResOrders 0.114*** 17.600 0.116*** 13.200 0.114*** 11.100

Monday 0.017* 1.680 0.031* 2.300 0.007* 0.340

Tuesday 0.011 -3.290 0.019 1.440 0.005 0.350

Wednesday 0.014 -6.740 0.032 2.650 0.001 -0.090

Thursday 0.006 0.618 0.027 2.240 -0.01 -1.090

Saturday -0.018*** 1.240 -0.011*** -1.660 -0.023*** -2.710

Sunday -0.046*** 1.630 -0.030*** -3.050 -0.058*** -6.040

10 A.M. 0.026*** 3.770 0.034*** 2.650 0.015*** 1.980

11 A.M. 0.022*** 3.500 0.030*** 2.760 0.010*** 1.540

12 A.M. 0.013* 1.740 0.018* 1.540 0.007* 0.728

1 P.M. 0.011 1.320 0.025 1.550 0.002 0.307

5 P.M. 0.001 0.500 0.016 1.370 -0.003 0.041

6 P.M. 0.007 0.862 0.028 2.030 -0.006 -0.308

7 P.M. 0.038*** 3.870 0.041*** 2.130 0.037*** 3.190

Observations 40,786 24,063 16,723

McFadden Pseudo R2 0.30 0.23 0.26

∗: p < 0.1; ∗∗: p < 0.05; ∗∗∗: p < 0.01

Olea and Pflueger (2013) for the first stage gives the same result. Since we have more instruments

(two) than the number of endogenous variables (one), an additional Sargan test examines the
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overidentification problem. The p-value of 0.576 is large enough that we cannot reject the null

hypothesis that the over-identification restrictions are valid. Consequently, we can conclude that

our IVs are valid and that the model as estimated is not misspecified.

4.5. Asymmetric Impact of Time Gap on Future Customer Orders

To further investigate how early and late deliveries affect a customer’s future orders, we divide our

data into two subsamples: early deliveries with TimeGapi being nonpositive in one sample (labeled

as Early-Delivery) and late deliveries with TimeGapi being positive in a second sample (labeled as

Late-Delivery). Then, we conduct the same two-stage estimation with IVs for these two subsamples

separately. Table 4 (Early-Delivery) and Table 4 (Late-Delivery) summarize our results. Observe

from Table 4 (Late-Delivery) that a late delivery has a much stronger effect on future customer

orders. Specifically, if the delivery time of a late order decreases by 10 minutes (i.e., less late by 10

minutes) given an unchanged required time, future customer orders per customer per day increase

by 0.0978 (0.00978∗10), or an increase of 2.7 orders per customer per month. However, the effect of

early deliveries is relatively mild. The estimated coefficient as reported in Table 4 (Early-Delivery)

is around 0.0246 (0.00246∗10), i.e., an increase of 0.74 orders per customer per month is associated

with a 10-minute earlier delivery. Overall, the effect of a later delivery on future customer orders

is around four times stronger than that of an early delivery. The asymmetric effect implies that,

to increase a customer’s future orders, the platform should assign orders to drivers more wisely in

order to avoid late deliveries. In addtion to the effect of time gap, the coefficients of other variables

and control variables are consistent with the results based on the Full Sample as shown in Table 4.

4.6. Robustness Checks

4.6.1. Reserved Orders The required time for those “on demand” orders is set by the plat-

form according to the estimated delivery time, which is based on customer location, order and

restaurant characteristics, driver utilization, congestion, etc. However, we do not observe order

cancellations due to customers finding the required time set by the platform to be unacceptably
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long. As a robustness check, we can focus our analysis on reserved orders alone, because they

are unlikely to be cancelled by the customers, especially as the required time is selected by the

customers when they place their reserved orders.18 We perform the same two-stage analysis by

focusing on those reserved orders alone. The result is summarized in Table 5, which exhibits similar

coefficient of TimeGap Fit as shown in Table 4 (i.e., −0.00347 versus −0.00344). Additionally, the

ratio of the effect of time gap for early to late deliveries for the subsample of reserved orders (i.e.,

0.00943/0.00267 = 3.53) is also close to the ratio for the whole sample without isolation of reserved

orders (i.e., 0.00978/0.00246 = 3.97). Thus, we can conclude that the effect of order cancellations

(those who do not place orders on the platform due to a concern about a long required time) is

negligible.

4.6.2. Repeat Customers Although we use a survival analysis to address the issue of unob-

served future orders that occur after our observation period, there is a concern that some customers

may never order again from the platform after placing their first orders. Thus, the coefficient of

TimeGap Fit in our previous analysis (Table 4) may be over or under estimated. To address this

concern, we use the sample of repeat customers who made purchases at least twice within our

observation period. We repeat the same two-stage analysis by focusing on repeat customers. Table

6 shows our results based on repeat customers. Comparing Table 4 with Table 6, we can see the

coefficients of TimeGap Fit in two tables, i.e., −0.00344 (in Table 4) and −0.00348 (in Table 6),

indicating that an increase of 1.03 orders and 1.04 orders per month, respectively, are not signifi-

cantly different in full sample regressions. Moreover, the impact of late delivery is always around

four times greater than that of early delivery on future customer orders in both analyses. There-

fore, we can conclude that the effect of time gap on a customer’s future orders is robust no matter

whether the customer is a repeat customer or not.

18 Recall that reserved orders are defined in section 3, and are orders whose dispatch times (from platform) are at

least one hour later than the time they were placed (by the customer).
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Table 5 Robustness Check: Reserved Orders Only

Full−Sample Early−Delivery Late−Delivery

coefficient z coefficient z coefficient z

Intercept 0.067*** 2.108 0.050*** 1.250 0.235*** 1.510

T imeGap Fit −0.00347∗∗∗ -2.593 −0.00267∗∗∗ -2.100 −0.00943∗∗∗ -1.930

Num Orders 0.032*** 1.981 0.016*** 1.850 0.005*** 1.940

ResStay 0.001** 1.399 0.001** -0.053 4.75E-05** 0.080

Distance 0.010*** 2.861 0.014*** 1.880 0.009*** 2.260

Price -3.97E-06*** -5.991 -3.70E-06*** -6.020 -8.43E-06*** -4.010

Congestion 0.009* 1.604 0.010* 1.130 0.002* 0.333

Temperature -0.001** -1.563 0.002** 0.848 -0.003** -2.400

ReservedTrue 0.048 5.184 0.047 3.670 0.042 3.190

Monday 0.021*** 1.305 0.039*** 1.310 0.024*** 1.040

Tuesday 0.007 0.584 0.016 0.916 0.000 -0.296

Wednesday -0.007 -0.462 -0.008 -0.350 0.001 -1.260

Thursday 0.011*** 0.699 0.015*** 0.705 0.007*** 0.231

Saturday -0.005* -0.363 0.000* 0.215 -0.002* -0.004

Sunday -0.008*** -0.620 0.005*** 0.531 -0.016*** -0.005

10 A.M. 0.043 4.413 0.026 1.560 0.042 3.530

11 A.M. 0.086*** 5.776 0.064*** 2.980 0.073*** 3.460

12 A.M. 0.129*** 4.841 0.141*** 3.200 0.111*** 3.080

1 P.M. 0.038* 1.093 0.084* 1.040 0.032* 0.592

5 P.M. -0.011 -0.788 0.009 0.566 -0.017 -1.230

6 P.M. 0.049 1.639 0.113 2.040 0.008 0.067

7 P.M. 0.149 2.508 0.305 2.730 -0.044 -0.787

Observations 2,338 1,442 896

McFadden Pseudo R2 0.23 0.18 0.20

∗: p < 0.1; ∗∗: p < 0.05; ∗∗∗: p < 0.01

5. Order Assignment Policies: A Simulation Study

In the last section, we established empirical evidence indicating that late deliveries have a stronger

negative impact on a customer’s future orders than the positive impact generated by early deliv-
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Table 6 Robustness Check: Survival Analysis for Demand with Repeat Customers

Full−Sample Early−Delivery Late−Delivery

coefficient z coefficient z coefficient z

Intercept 0.486*** 10.200 0.304*** 3.840 0.289*** 1.633

T imeGap Fit −0.00348∗∗∗ -2.490 −0.00220∗∗∗ -2.010 −0.01050∗∗∗ -1.870

Num Orders 0.029*** 2.540 0.037*** 2.900 0.026*** 1.400

ResStay 0.001** 1.590 0.002** 2.210 0.000** 0.452

Distance 0.035*** 5.780 0.033*** 3.850 0.036*** 4.590

Price -1.89E-05*** -18.000 -1.53E-05*** -10.600 -2.14E-05*** -15.400

Congestion 0.015* 3.020 0.010* 1.560 0.022* 2.980

Temperature 0.008** 6.100 0.010** 5.230 0.006** 2.450

ReservedTrue -0.053 -0.139 0.343 1.310 -0.06 1.320

CV ResOrders 0.101*** 6.900 0.074*** 4.190 0.115*** 4.900

Monday 0.034* 1.260 0.047* 1.270 0.019* 0.120

Tuesday 0.011 0.299 0.047 1.520 -0.015 -0.916

Wednesday 0.030 1.540 0.081 2.930 -0.001 -0.315

Thursday -0.014 -1.110 0.022 0.654 -0.043 -1.980

Saturday -0.003*** -0.809 0.016*** 0.282 -0.018*** -1.330

Sunday -0.068*** -4.050 -0.039*** -1.410 -0.091*** -4.140

10 A.M. 0.040*** 2.500 0.032*** 1.240 0.049*** 2.490

11 A.M. 0.006*** 0.826 0.021*** 1.280 -0.002*** 0.174

12 A.M. 0.000* 0.601 0.010* 0.907 -0.005* 0.204

1 P.M. -0.013 -0.148 -0.035 -0.552 -0.003 0.286

5 P.M. -0.024 -0.947 -0.038 -0.801 -0.02 -0.768

6 P.M. -0.031 -1.610 0.005 0.209 -0.07 -2.570

7 P.M. 0.031*** 1.260 0.022*** 0.408 0.042*** 3.880

Observations 27624 16825 10799

McFadden Pseudo R2 0.28 0.27 0.22

∗: p < 0.1; ∗∗: p < 0.05; ∗∗∗: p < 0.01

eries. Additionally, a driver with local area knowledge and more delivery experience can perform

the delivery service faster. These two results suggest that, to increase future customer orders,
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the platform should take (a) the impact of a driver’s knowledge and experience on time gap (or

delivery time), and (b) the asymmetric impact of early and late deliveries on future orders into

consideration when assigning orders to drivers. After establishing these two empirical results, we

are interested in exploring our third research question: how should one incorporate factors (a) and

(b) to develop an order assignment policy that can effectively increase a customer’s future orders?

Upon discussing with the management, we learned that their order assignment policy did not take

driver knowledge and experience or the asymmetric impact of early/late deliveries into considera-

tion (primarily because the effect of factors (a) and (b) was not known to the management until

our empirical study). This observation motivates us to develop an effective order assignment pol-

icy that incorporates both factors (a) and (b). Additionally, we examine the benefit of our order

assignment policy over two benchmark policies via a simulation study.

To evaluate the performance of our policy that takes factors (a) and (b) into consideration, we

first establish two benchmark policies. The first policy (Policy 1) is a benchmark policy that assigns

orders to drivers by minimizing total delivery distance. This policy takes neither factor (a) nor

(b) into consideration, which mimics the policy used by the platform.19 The second policy (Policy

2) assigns orders to drivers by minimizing the total estimated delivery time. This policy takes

factor (a) but not factor (b) into consideration. Finally, our policy (Policy 3) takes both factors

into consideration, and it assigns orders to drivers by maximizing the estimated number of future

orders (which depends on each driver’s knowledge and experience and the asymmetric impact of

early/late deliveries).

5.1. Simulating Orders and Driver Locations

Before we define these three policies formally, let us first describe how we evaluate these three

policies via a simulation study. Note that our data set contains information about each driver’s

19 The actual policy adopted by the platform is not available to us even though we know that the adopted policy

does not take either factor into consideration. Therefore, Policy 1 captures the spirit of the policy adopted by the

platform.
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location at the moment he arrives at the designated restaurant’s (or customer’s) location, but it

does not contain information about each driver’s location in real time. Hence, we cannot simulate

order assignments dynamically in real-time. To overcome this challenge, we take a different tack.

Instead of assigning each incoming order to a driver in real time, we consider a discrete time

approach in which the platform assigns orders accumulated over a short-time period (e.g., every

5 minutes) to drivers. Per our discussion with the management, dispatching orders using discrete

time (e.g., every 5 minutes) appears to be consistent with actual practice.

In our simulation study, we consider a specific instant when the platform needs to assign N

orders (accumulated within a short-time period, say, 5 minutes) to N drivers. We first generate

these N “random orders” (consisting of customer and restaurant locations) randomly from a pool

orders received during the noon peak hours (10 a.m. - 1 p.m.) in our data set. Then, to develop

a proxy of the locations of those N drivers, we assume that all N drivers are completing their

deliveries at different customer locations at that specific instant. To do so, we generate a set of N

“random locations” for the drivers by selecting another N customer order locations randomly from

our database during the same time period. As a result, we have N randomly generated “driver

locations” and N “new orders” (with both restaurant and customer locations) for that specific

instant. By using this information, we can compute the performance metrics associated with each

policy when we assign order i to driver j, where i, j = 1, · · · ,N associated with different policies.

5.2. Three Order Assignment Policies

All three assignment policies are based on the following standard assignment constraints:

N∑
i=1

xij = 1, ∀j = 1 . . .N,
N∑
j=1

xij = 1 ∀i= 1 . . .N,xij = {0,1}, ∀i, j, (5)

where xij = 1 if order i is assigned to driver j and equals 0, otherwise. However, different assignment

policies are established according to different objective functions.
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Specifically, Policy 1 focuses on minimizing the total distance, where the travel distance dij

when we assign order i to driver j is computed according to Equation (1). In this case, the order

assignment policy under Policy 1, xij, is the optimal solution to the following assignment problem:

(Policy 1) min
N∑
i=1

N∑
j=1

dijxij subject to (5).

Next, Policy 2 aims to minimize the total delivery time, where the delivery time tij when driver

j is assigned to order i is given as:

tij =
dij
s

+ β̂expExpj + β̂localLocalij + outstandingj. (6)

Here, s is the travel speed (km/hour) which is assumed to be the same among all drivers. In

the simulation, we draw s from Uniform[10, 20] so that the average travel speed is 15 km/hour;

this resembles the actual travel speed in Hangzhou during noon hours. Expj is driver j’s delivery

experience (in days). Localij is a dummy variable indicating whether driver j had previously visited

the neighborhood of order i’s customer location.20 Additionally, because it is possible that the

driver will have outstanding orders to finish when he gets this new assignment, we use outstandingj

to denote the additional delivery time to complete outstanding orders by driver j.21 Hence, the

order assignment policy under Policy 2, xij, is the solution to the following assignment problem:

(Policy 2) min
N∑
i=1

N∑
j=1

tijxij subject to (5).

20 Because our data set does not contain delivery experience for drivers appearing before July 5, 2015, we generate

Expj from Uniform[0, 60] and Localij from a Bernoulli distribution with a success rate 0.2. β̂exp and β̂local are set

according to Table 3 (Model 5), i.e., β̂exp =−0.17 and β̂local =−3.33.

21 The number of outstanding orders is randomly drawn from the data. If driver j has n outstanding orders on hand,

outstandingj is randomly generated from a normal distribution N(20n,9
√
n) (in minutes), because the mean and

standard deviation of service time are approximately 20 minutes and 9 minutes, respectively. Note that the service

time of order j is calculated as finishT imej −max(dispatchT imej , previousOrderF inishT imej).
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Finally, Policy 3 focuses on maximizing total future customer orders. To determine future cus-

tomer orders for different order assignments, we need to utilize the empirical results that were

established earlier. First, for each randomly selected order i from our database, we have informa-

tion about the corresponding restaurant and customer locations as well as the required time ri for

the order. Recall from Table 4 that an early delivery of (ri − tij)+ minutes is associated with an

estimated coefficient 0.00246 (denoted by β̂e) and a late delivery of (tij−ri)+ minutes is associated

with an estimated coefficient 0.00978 (denoted by β̂l), where the delivery time tij when driver j

is assigned to order i is given in (6). By noting that early (late) deliveries can increase (decrease)

a customer’s future orders, the order assignment policy under Policy 3, xij, is the solution to the

following assignment problem:

(Policy 3) max
N∑
i=1

N∑
j=1

[
β̂e(ri− tij)+− β̂l(tij − ri)+

]
xij subject to (5).

5.3. Simulation Results

We conduct our simulation study to evaluate the aforementioned three policies as follows. We

randomly generate 500 scenarios by using the data set associated with orders that occur during

the noon time period (10 a.m. - 1 p.m.). Each of the 500 scenarios is based on N = 150 randomly

generated driver locations and N = 150 randomly generated orders (restaurant and customer loca-

tions as well as the required time for each order). For each scenario, we determine the optimal

assignment for each policy by solving the three corresponding (assignment) problems described

above. In addition to the optimal order assignment for each policy, we compute different perfor-

mance metrics: total delivery distance (in kms), total delivery time (in minutes), on-time/early

delivery percentage (i.e., the proportion of those 150 randomly generated orders completed before

the required time), and the increase in a customer’s future orders (i.e., the increase of a customer’s

reorders per day as predicted by our additive hazard model previously presented).

By computing the average performance associated with the three order assignment policies across

all 500 scenarios, we summarize our results in Table 7. Observe from the table that all three
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Table 7 Performance Comparison across Three Order Assignment Policies

Policy 1 Policy 2 Policy 3

(Min Distance) (Min Delivery Time) (Max Future Orders)

Avg. Delivery Distance (Km) 3.56 3.66 3.87

Avg. Delivery Time (Minute) 37.44 36.12 37.38

Avg. On-Time/Early Delivery (%) 73.3% 75.2% 88.7%

Avg. Future Order Increase (order/day) 0.0010 0.0095 0.0379

order assignment policies have a similar performance in terms of travel distance and delivery time.

However, Policy 3 outperforms the other two benchmark policies in terms of average on-time/early

deliveries and future order increase. The reason why Policy 3 dominates the other two policies in

these two dimensions is because Policy 3 takes the asymmetric effect of early and late deliveries

on future customer orders into consideration when assigning orders to drivers. In addition, the

consideration of the impact of a driver’s knowledge and experience on time gap alone can generate

more future orders as indicated by the comparison between Policy 2 and Policy 1.

Next, we compare performance across all three order assignment policies in terms of the rate

of future orders increases as we vary the local area knowledge of drivers. To do so, we generate

500 scenarios by following the same process as described earlier. However, to vary the local area

knowledge of drivers, we define a parameter l ∈ [0,1] and we vary this parameter l from 0 to 1. For

each given value of l and for each of the 500 scenarios, we simulate the local area knowledge of each

driver and order pair Localij as a Bernoulli trial so that Localij = 1 with probability l and equals

0 with probability (1− l). For each randomly generated value of Localij, we can use Equation (6)

to compute the delivery time tij so that we can determine Policy 2 and Policy 3 by solving the

corresponding assignment problems. Figure 3(a) depicts our results as we vary l from 0 to 1.

Based on Figure 3(a), we observe that Policy 3 bests the other two policies in terms of future order

increase rate because it takes the asymmetric effect of early/late deliveries on future orders into

consideration. For Policy 1, the future order increase rate grows linearly as the local area knowledge
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Figure 3 Performance of three order assignment policies

level l increases because the underlying order assignment does not take local area knowledge into

consideration. Therefore, future order increase is gained purely from the reduction in delivery time

due to the increase in driver’s local experience level l. By comparing Policy 1 and Policy 2, it is

evident that the benefit of incorporating the impact of a driver’s knowledge and experience on

time gap is high when the driver’s local area knowledge l is modest. In addition, Figure 3(a) also

suggests that, under policies 2 and 3, the future order increase rate exhibits a decreasing marginal

return as the driver’s local area knowledge level l increases. Hence, it is sufficient for the platform

to have 20% of driver and order pairs with local area knowledge because the marginal benefit to

increasing local area knowledge beyond 20% is limited. If one treats delivery drivers with local

area knowledge as a flexible resource, our study of delivery services echoes the classical finding

about process flexibility. That is, a little flexibility can generate a performance that is close to full

flexibility (Jordan and Graves 1995, Chou et al. 2010, Wang and Zhang 2015, Désir et al. 2016).

Finally, we compare performance across all three order assignment policies when we vary the

number of orders N between 100 and 300. As the number of orders within the same geographical

region N grows, the chance of finding a driver who is located near a designated restaurant/customer

location will increase. (This is akin to the “scaling” effect exhibited in ride-hailing services: a
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passenger’s waiting time and a driver’s idle time decrease as the number of passengers and drivers

increases.) By using the same approach as before and keeping the driver’s local area knowledge

level l at 0.2, we obtain the results shown in Figure 3(b). Observe from Figure 3(b) that all

three assignment policies can generate more future orders as N increases due to the scaling effect.

However, Policy 3 continues to dominate the other two policies.

6. Conclusion and Discussion

We have investigated how delivery performance (Time Gap) affects the revenue growth of an on-

demand meal delivery platform by analyzing transactional data from 40,786 orders delivered by 161

drivers over a two-month period in Hangzhou. We found empirical evidence that early deliveries can

increase future customer orders, while late deliveries can strongly decrease future customer orders.

Additionally, we established empirical evidence indicating that a driver’s local area knowledge and

delivery experience can significantly affect a driver’s delivery time.

By leveraging our empirical results, we developed two benchmark order assignment policies and

established a policy that aims to maximize total future customer orders by taking the asymmetric

impact of late and early delivery on future orders and each driver’s local area knowledge and deliv-

ery experience into consideration when assigning orders to drivers. Through our simulation study

of 500 scenarios (with 150 random orders in each scenario), we illustrated that, by taking both the

asymmetric impact of delivery time gap and each driver’s local area knowledge and delivery expe-

rience into consideration when assigning orders to drivers, the platform can significantly increase

a customer’s future orders.

Beyond our assignment policy that takes each driver’s local area knowledge and delivery expe-

rience into consideration, some platforms have developed incentives to discourage drivers from

delivering their orders late. For instance, Meituan and Ele.me in China penalize drivers for late

deliveries. However, this penalty system can backfire. For instance, to avoid being penalized, many

meal delivery drivers in China prioritize speed over safety, which has caused traffic accidents and
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deaths in China.22 This observation raises an interesting question to be examined in the future:

What is the right (reward and/or penalty) incentive mechanism that can encourage more on-time

deliveries without sacrificing safety?

Additionally, our data revealed that drivers wait for 5.79 minutes (on average) to pick up their

orders in restaurants. Therefore, it is of interest to examine the following question: Is there a

way for the platform to help restaurants to plan their operations better so that drivers do not

need to waste too much time waiting for orders? Should the platform also develop mechanisms to

encourage customers to place more “reserved” orders so that the platform can better coordinate

with restaurants and drivers to improve delivery performance?

Akin to other smart city initiatives (Mak 2018a, Qi and Shen 2019), the on-demand nature

and the huge volume of data related to meal delivery services in a city creates opportunities to

develop innovative solutions. Ultimately, the OM research community has more novel planning and

coordinating problems to explore.

References

Aalen, O. O. (1989). A linear regression model for the analysis of life times. Statistics in medicine, 8(8):907–

925.

Anderson, E. W., Fornell, C., and Mazvancheryl, S. K. (2004). Customer satisfaction and shareholder value.

Journal of marketing, 68(4):172–185.

Bai, J., So, K. C., Tang, C. S., Chen, X., and Wang, H. (2018). Coordinating supply and demand on an on-

demand service platform with impatient customers. Manufacturing & Service Operations Management.

Benjaafar, S. and Hu, M. (2019). Operations management in the age of the sharing economy: What is old

and what is new? Forthcoming, Manufacturing and Service Operations Management.

Bolton, R. N. and Lemon, K. N. (1999). A dynamic model of customers’ usage of services: Usage as an

antecedent and consequence of satisfaction. Journal of marketing research, 36(2):171–186.

22 “Speed over safety? China’s food delivery industry warned over accidents,” Reuters, 28 September, 2017.

35

 Electronic copy available at: https://ssrn.com/abstract=3469015 



Bolton, R. N., Lemon, K. N., and Bramlett, M. D. (2006). The effect of service experiences over time on a

supplier’s retention of business customers. Management Science, 52(12):1811–1823.

Cachon, G. P., Daniels, K. M., and Lobel, R. (2017). The role of surge pricing on a service platform with

self-scheduling capacity. Manufacturing & Service Operations Management, 19(3):368–384.

Calvo, E., Cui, R., and Serpa, J. C. (2019). Oversight and efficiency in public projects: A regression discon-

tinuity analysis. Management Science.

Chen, Y. and Hu, M. (2019). Pricing and matching with forward-looking buyers and sellers. Manufacturing

& Service Operations Management.
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A1. Variable Summary

Table A1 Summary of Variables

Variable Abbreviation Definition

Time interval between

order i and the next

order placed by the

same customer

Durationi = tnext(i)− ti ti corresponds to the day order i was placed,

and tnext(i) denotes the time the next order was

placed by the same customer. We set tnext(i) = T

if no next order was placed by the end of the

observation period T .

Censored indicator of

Durationi

δi δi = 1 when there is no next order being placed

before T , otherwise δi = 0

Delivery time gap TimeGapi Actual delivery time of order i - the platform’s

estimated delivery time of order i

Delivery distance Distancei Travel distance between restaurant and cus-

tomer for order i

Waiting time in a

restaurant for order i

ResStayi Amount of time that the designated driver has

to wait at the restaurant to pick up order i

Coefficient of variation

of restaurant orders

CV ResOrderi CoV (standard deviation / mean) of daily orders

associated with the restaurant that processes

order i

Meal price Pricei Price of order i

Traffic congestion level Congestioni Congestion level when order i is placed.

Week day dummy Monday, Tuesday, . . . Mondayi = 1 if order i is placed on Monday.

Tuesdayi = 1 if order i is placed on Tuesday. . . .

Peak hours dummy 10A.M., 11A.M.,. . . Dummies for peak hours from 10 A.M. to 1

P.M., and 5 P.M. to 7 P.M.

Driver’s experience Experiencei Driver’s working days between 5 July 2015 and

the day when order i is assigned

Driver’s local area

knowledge

Locali Locali = 1 if order i is delivered by a driver who

had previously visited the neighborhood (i.e.,

200m× 200m region)

A1

 Electronic copy available at: https://ssrn.com/abstract=3469015 



A2. Additive Hazard Model with Instrumental Variables

We now extend our additive hazard model to incorporate instrument variables (IVs) and show

that applying an IV using a similar-to-2SLS method can address the endogeneity problem and

give us unbiased coefficient estimates. Primarily under an additive hazards model, Tchetgen et al.

(2015) described two methods including the two-stage regression analysis in a survival context. By

following the similar logic, we here demonstrate how IVs work in our model. By recalling from

Section 4.1.1 that TimeGapi represents the time gap between the required time and the actual

delivery time of order i and from Section 3.3 that our control variables Xi associated with each

order i include price, distance and delivery time, etc., we try to estimate the effect of these variables

on the time to customer’s next order, denoted by tnext. Recall that we first implement the following

model without IVs in our estimation in Section 4.1.1,

h(t|X∗,X) = α(t) +β(t)X∗+Xγ(t), (A1)

where TimeGapi is replaced by X∗, Xi is replaced by X. In doing so with unobserved variables

ignored, we inevitably encounter an endogeneity problem and the coefficient estimates, i.e., β(t)

and γ(t), are biased. Thus, we cannot exclude unobserved variables without dealing with the

underlying endogeneity issue in the estimation, and we need to develop a different approach. First,

we rewrite a complete form of Equation (2) by including unobserved variables as follows:

h(t|X∗,X,U,Z) = α̃(t) + β̃(t)X∗+Xγ̃(t) + ζ(t)U, (A2)

where U is an unobserved variable and Z are instrumental variables. Notice that although this

is the complete formation, we cannot directly estimate Equation (A2) because of the unobserved

variable U .

Next, we need to show that, by incorporating instrumental variables Z and applying the similar-

to-2SLS method in the second-stage estimation, we can remove the effect of unobserved U while
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keeping the coefficients of covariates unbiased as in Equation (A2). We derive the survival function

(i.e., the tail distribution of survival time) associated with the model as stated in (A2), where:

S(t|X∗,X,U,Z) = exp{−
∫ t

0

[α̃(s) + β̃(s)X∗+Xγ̃(s) + ζ(s)U ]ds}. (A3)

Utilizing the instrumental variable of Z, we can delve into the correlation between Z and the

endogenous variable X∗ by using the following linear regression model (as our standard first-stage

estimation of TimeGapi):

X∗ = α0 +β0Z +Xγ0 + ε, (A4)

where the error term ε is assumed to have a mean of 0 and be independent of Z. By assuming that

there is a statistically significant correlation between X∗ and Z (as verified in our empirical analysis

in Section 4.1.2 and Section 4.4), we do not further analyze the strength of such a correlation or

the goodness of fit for this model as it requires additional tests. For Z to be a valid IV, time to the

next order, i.e., tnext, and instrumental variables Z must be conditionally independent given (X∗,

X, U)23, i.e., the exclusion restriction condition.

For ease of exposition, let D = d(Z,X) = α0 + β0Z +Xγ0, where D = E(X∗|Z,X). Then, we

can rewrite the survival function given in (A3) as:

S(t|X∗,X,U,Z) = exp{−
∫ t

0

[α̃(s) + β̃(s)D+Xγ̃(s)]ds} · exp{−
∫ t

0

[β̃(s)ε+ ζ(s)U ]ds} (A5)

Our goal is to deal with unobserved variables so that the estimation of the survival function does

not depend on U . Then, we have:

S(t|X,Z) =E(S(t|X∗,X,U,Z)|X,Z)

= exp{−
∫ t

0

[α̃(s) + β̃(s)D+Xγ̃(s)]ds} ·E[exp{−
∫ t

0

[β̃(s)ε+ ζ(s)U ]ds}|X,Z].

(A6)

23 We allow that the controlled X∗ given Z can be conditionally correlated with the unobserved variable U , i.e.,

cov(ε,U |Z) 6= 0.
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First, by assuming that U is independent of Z in addition to the previous independence assumption

between ε and Z (in order to ensure Z to be a valid IV), we get:

E[exp{−
∫ t

0

[β̃(s)ε+ ζ(s)U ]ds}|X,Z] =E[exp{−
∫ t

0

[β̃(s)ε+ ζ(s)U ]ds}|X] (A7)

Second, because X is the covariate vector without an endogeneity problem and is assumed to have

no correlation with either U or ε, we have:

S(t|X,Z) = exp{−
∫ t

0

[α̃(s) + β̃(s)D+Xγ̃(s)]ds} ·E[exp{−
∫ t

0

[β̃(s)ε+ ζ(s)U ]ds}] (A8)

Combining these two observations as stated in (A7) and (A8), we can write our additive hazard

model from the survival function S(t|X,Z) as:

h̃(t|X,Z) = α̃(t) + β̃(t)D+Xγ̃(t)−
∂logE[exp{−

∫ t
0
[β̃(s)ε+ ζ(s)U ]ds}]
∂t

= ˜̃α(t) + β̃(t)D+Xγ̃(t),

(A9)

where ˜̃α(t) = α̃(t)− ∂logE[exp{−
∫ t
0 [β̃(s)ε+ζ(s)U ]ds}]
∂t

.

In summary, we have shown that by incorporating instrumental variables Z and following the

similar-to-2SLS procedure, our estimation function in the second stage manages to remove the

effect of unobserved variables and still maintain its coefficients of β̃(s) and γ̃(t) unbiased, which

is the same as in the complete hazard model of Equation (A2). �
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