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Abstract

Divide and Inform: Rationing Information to Facilitate Persuasion

This article develops a Bayesian persuasion model examining a manager’s incentives to gather
information when the manager can disseminate this information selectively to interested parties
(“users”) and when the objectives of the manager and the users are not perfectly aligned. The
model predicts that, if the manager can choose the subset of users to receive the information, then
the manager may gather more precise information. The article identifies conditions under which
a regime that allows managers to grant access to information selectively maximizes aggregate
information. Strikingly, this happens when the objectives of managers and users are sufficiently
misaligned. This finding is robust to variations of the model such as information acquisition cost,
unobservable precision, sequential noisy actions taken by the users and delayed choice of the subset
of users in “the know.” These results call into doubt the common belief that forcing managers to
provide unrestricted access to information to all potential users is always beneficial.

Key words: Bayesian persuasion, ex ante commitment to information design, endogenous quality
of information, verifiable messages, selective dissemination, persuasion with multiple receivers



1 Introduction

Fairness considerations, common practices and regulations require that managers communi-

cate information to all potential users of this information. The standard view is that fairness

and greater availability of information at an aggregate level go hand in hand. The justifi-

cation for this view is that, provided managers report truthfully, they disseminate the same

quality of information regardless of who receives it. However, this argument ignores the fact

that the quality of information may be endogenous. Managers choose not only to whom to

disclose the information but also whether and what quality of information to gather in the

first place, and this choice may be affected by the size of the audience and the managers’ ob-

jectives. This article studies the effects of managers’ discretion to limit access to information

to a subset of users on the managers’ incentives to gather information and thereby on the

aggregate information available to the public. Within the confines of the model, this allows

inferences about ex ante efficiency and the trade-off between the fairness and the information

objectives.

I develop a model of Bayesian persuasion with information control that builds on the

model of Kamenica and Gentzkow (2011). The players—a firm manager (“she”) and a group

of identical users (“they” in plural, “he” in singular)—have misaligned preferences in a sense

that the users prefer to take actions aligned with the state of nature, while the manager

prefers that the users’ aggregate action be partially aligned with the state and partially

aligned with a target that may differ from that state.1 This setting creates an incentive for

the manager, if not constrained by regulation, to choose a quality of information and subset

of users resulting in posterior expectations that improve the odds of satisfying the manager’s

preferences. Perhaps more surprising, allowing managers to do so may make all parties at

least weakly better off (some strictly better off).

While stylized, the model captures essential features of several examples of misaligned

preferences that could lead to limited dissemination in equilibrium. A manager may seek

to induce consensus earnings forecasts from financial analysts (users) that the firm is more

likely to meet or beat.2 A CEO (manager) may increase the likelihood of a majority vote
1All results hold when the users are also biased as long as they prefer actions that are more sensitive to

the state than the aggregate action the manager prefers.
2The manager may also seek to induce forecast that is high (to increase the stock price and the managers’

stock-based compensation) or low (to trigger a low exercise price before an option grant date).
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on the part of shareholders (users) for continuation of her employment or for approving an

acquisition that contributes to her empire building. Investors (users) may choose whether to

participate in supplying capital to an entrepreneur (manager) based on an expected future

payoff, while the entrepreneur may suffer a private loss not borne by investors if a desired

level of funding is not achieved. Similar conditions may arise when a CFO (manager) who

seeks to obtain a loan from a syndicate of lenders (users), or when a CEO (manager) pro-

vides access to internally generated data to divisional and sales managers (users) in hope of

achieving a prescribed performance threshold or implementing a product strategy. A govern-

ment official (manager) may likewise want to achieve a certain target through dissemination

of data and influencing the decisions of market participants (users). In these examples, the

manager may find some combination of information quality and limited dissemination to be

optimal. In many cases, such limited dissemination is common. For example, Chinese walls

are frequently used for restricting the dissemination of information within firms.3 In other

cases, selective dissemination is prohibited. For example, Regulation FD prohibits selective

disclosure by managers, but its effect on the informational efficiency is controversial.4 This

article provides a theoretical framework that links the managers’ ability to disseminate in-

formation selectively with factors that influence the quality of information and, by doing so,

illuminates the tension between fairness and informational efficiency.

The first part of the article considers a setting in which the manager has to choose

the fraction of informed users ex ante and the implementation of an information system

is cost-free. The analysis shows that, if the manager does not have discretion over the

access to information, she implements a perfectly revealing information system only if her

preferences are sufficiently aligned with those of the users.5 If the players’ objectives are

very misaligned, the users react too sensitively to the signal from the manager’s point of

view. Hence the manager is better off not providing information and leaving the users to act
3I thank an anonymous referee for pointing this out.
4Herrmann, Hope and Thomas (2008), for example, show an increase in the average analyst forecast

accuracy after Reg FD, while Agrawal, Chadha and Chen (2006) document a decrease. Francis, Nanda and
Wang (2006) and Heflin, Subramanyam and Zhang (2003) find no evidence of significant change. At a post-
adoption roundtable discussion, analysts and other panelists expressed concerns that Reg FD had diminished
the quantity and quality of the information disseminated by firms. See Regulation Fair Disclosure Revisited,
Report by Commissioner Laura S. Unger, http://www.sec.gov/news/studies/regfdstudy.htm.

5This is a multiple-receivers variation of the findings in Kamenica and Gentzkow (2011).
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on their prior.6,7 In contrast, if the manager can restrict access to information, she always

implements a perfectly revealing system. This happens despite the fact that the users are

ex ante identical. By keeping some of the users “in the dark,” the manager can regulate the

sensitivity of the users’ aggregate action to changes in the state of nature. As a result of

this additional degree of freedom, the manager now finds it in her interest to implement the

most informative system, the output of which is only selectively disseminated. As one would

expect, the optimal fraction of privileged users who get to observe the signal is increasing in

the degree of players’ objective alignment.

A corollary of the preceding discussion is that, within the confines of the base model, if

the players’ preferences are sufficiently misaligned, a regime that allows for information dis-

crimination (“unregulated dissemination”) not only maximizes aggregate information, but it

also Pareto dominates a regime that requires information dissemination to all users (“man-

dated dissemination”). It makes the manager better off (by revealed preference) as well as

some users (because they receive information that would not be available otherwise) without

making the other users worse off (because they do not observe the information anyway).8

Paradoxically, when the players’ preferences over actions are misaligned, their preferences

over regimes are aligned. The opposite is also true: when the players’ preferences over ac-

tions are sufficiently aligned, their preferences over regimes are misaligned. The manager

then prefers unregulated dissemination, while all users at least weakly prefer mandated dis-

semination. This result calls into doubt the conventional wisdom that regulating information

dissemination and requiring equal access is especially needed when the incentive conflict is

severe. Ironically, under this scenario, regulations forcing equal access will promote fairness

but at the expense of reduced overall information.

With costless information acquisition, the optimal precision is a bang-bang solution: the

manager implements either a perfectly revealing information system or one that does not

convey any information at all. However, interior precision levels and information acquisition

costs are frequently observed in practice. With costly implementation, I find that, if the
6As anecdotal evidence, in July 2013, the SEC required Urban Outfitters to publicly disclose the effect of

direct-to-customer sales on the net retail segment sales. In response, Urban Outfitters declared that, effective
the first quarter of 2014, the company will no longer gather this information even for internal purposes.

7In 1970s, the car manufacturers did not perform certain safety tests to avoid the disclosure of the results.
8In subsection 5.3.1, I consider an extension in which the users are rewarded for relative performance.

In this case, no Pareto ranking can be made.
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fraction of informed users were exogenous, then the interior optimal precision level would be

lower, the farther this fraction is from the one the manager would choose if she could.

When the preferences between the players are misaligned, the Pareto ranking of mandated

and unregulated dissemination regimes remains the same. However, when preferences over

actions are aligned, the introduction of precision costs creates disagreement between the users

regarding the preferred regime. The assessment of the aggregate users’ welfare depends on

two countervailing effects: (i) a precision effect—the information collected under unregulated

dissemination is more precise than under mandated dissemination—and (ii) an omission

effect—the fraction of users who observe the information under unregulated dissemination

is lower than under mandated dissemination. This article identifies sufficient conditions

under which the users are better off, on an aggregate level, under unregulated dissemination.

Put differently, even the users themselves, at some prior state, would collectively agree to

unregulated dissemination, as long as they are behind the veil of ignorance (Harsanyi, 1955),

that is, before each learns whether he will be included in the group of informed users.

In the last part of the article, I consider variations of the model. First, I relax the

assumption that the manager has to choose the fraction of informed users ex ante and

examine the manager’s dissemination strategy and incentives to implement an information

system. Next, I consider a setting in which the information precision is unobservable and

show that the same equilibrium persists, but it is no longer unique. Lastly, I extend the

results by allowing the users to choose the timing of their actions. I identify conditions under

which, in equilibrium, (i) the users act simultaneously and (iii) the users act sequentially

but no unraveling occurs.

The article belongs to the persuasion literature. Its primary theoretical antecedent is the

Bayesian persuasion model of Kamenica and Gentzkow (2011). As in Alonso and Camara

(2014) and Wang (2013), this article focuses on information control with multiple receivers.

Similar to Gentzkow and Kamenica (2013), the model allows persuasion to be costly. The

article relates to the literature that studies ex ante commitment to information system

design (Baiman 1975; Arya, Glover and Sivaramakrishnan 1997; Göx and Wagenhoffer 2009;

Shavel 1991) and literature that links ex ante information acquisition with ex post choice

of communication strategy (Che and Kartik 2009; Fischer and Stocken 2010; Hughes and

Pae 2004; Pae 1999). One of the key applications of the study is financial reporting to
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external users, and so the article relates to the literature on costs and benefits of information

dissemination, which is reviewed by Verrecchia (2001), Dye (2001), Beyer, Cohen, Lys, and

Walther (2010) and Stocken (2012). The model has features in common with the mandatory

and the voluntary disclosure literature. The key difference is the timing: the information

dissemination is only voluntary ex ante when the manager decides whether to implement

an information system. However, once an implemented system has generated a signal, the

manager must truthfully share it with the predetermined group of users.

Prior literature on selective disclosure considers models that focus on the ex post strategic

communication between players with asymmetric information (e.g., cheap-talk and disclosure

models). I assume that the players have symmetric information and focus on the ex ante

strategic control of the information. This allows for identification of unintended consequences

of prohibiting selective dissemination that differ from the already studied effects driven

by herding (Arya, Glover, Mittendorf and Narayanamoorthy 2005), externalities (Chen,

Lewis, Schipper and Zhang 2016), users’ incentives to gather information (Jorgensen, Li

and Melumad 2013; Demski and Feltham 1994; Kim and Verrecchia, 1991; McNichols and

Trueman 1994), price efficiency (Dutta 1996) and private information sale (Bushman 1991;

Sabino 1993). Other related studies consider ex ante commitment to dissemination policy

(Edmans, Heinle and Huang 2013; Gao and Liang 2013) and choice of report precision that

is publicly disclosed (Penno 1996; Titman and Trueman 1986).

The article proceeds as follows. Section 2 describes the model. Section 3 analyzes the

access to information and considers policy implications. Section 4 extends the results to

costly implementation of information systems. Section 5 discusses the robustness of the

results to variations of the model. Section 6 concludes. All proofs are in the appendix.

2 Model Setup

I consider a manager (e.g., CEO, CFO, government official) and a group of individuals labeled

“users” (e.g., analysts, shareholders, divisional managers, investors) who are interested in

learning about a state of nature to make their decisions. There is a continuum of identical

users uniformly distributed on the interval [0, 1].9 In the main part of the article, the users
9This is a convenience assumption. The only place where this assumption affects the analysis is subsection

5.3.1.
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act simultaneously. In subsection 5.3, I extend the analysis by assuming the users can choose

the date at which they act. The payoff of user i depends on his own action ai ∈ R (e.g.,

analyst’s forecast, divisional manager’s production decision, investment level) and the state

of nature ω ∈ R (e.g., economic earnings, inventory levels)

u(ai, ω) = −(ai − ω)2.

For any realization of the state of nature, the interior solution that maximizes the payoff of

user i is

a∗(ω) ∈ arg max
ai

u(ai, ω) = ω, (1)

i.e., a representative user prefers an action that is fully aligned with the state of nature.10,11

In the main part of the article, the payoff of user i does not depend on the actions of other

users. In Section 5, I relax this assumption. The payoff of the manager depends on the

aggregate action of all users, denoted by

A ≡
∫ 1

0
aidi,

(e.g., consensus forecast, overall firm production) and on the state of nature ω and is denoted

by:

v(A, ω) = −(A− kω − (1− k)ω)2,

where k ∈ (0, 1) and ω ∈ R are commonly known parameters. For any realization of the

state of nature, the interior solution that maximizes the manager’s payoff is

A∗(ω) ∈ arg max
A

v(A, ω) = kω + (1− k)ω. (2)

The manager prefers an aggregate action that is partially aligned with the state of nature ω

and partially biased toward some exogenous value ω.12 For example, managers may prefer
10For example, analysts care about their reputation for accuracy; divisional managers want to accelerate

production if there is not enough inventory.
11Analysts might be upward biased in good states and downward biased in bad states to amplify the

trading volume. Allowing for different sensitivity to the state of nature and bias in the users’ bliss point will
not change the results qualitatively as long as the users’ preferred actions are more sensitive to the state of
nature than the manager’s preferred aggregate action.

12A similar preference was introduced in a cheap talk setting by Melumad and Shibano (1991) and by
Kamenica and Gentzkow (2011) in their lobbying example of a Bayesian persuasion game. In Melumad
and Shibano (1991), the communication game is affected by preference reversal, i.e., the bliss point of the
manager can be lower or higher than the bliss point of the user in different environments. In my model,
although preference reversal is possible depending on the relative magnitude of ω vis-a-vis ω, it does not
affect the persuasion game because the manager can persuade the users to take an aggregate action that is
closer to kω but cannot persuade them to take an action closer to (1− k)ω.
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consensus forecasts that are less sensitive to the economic earnings and are biased toward

a specific forecast that maximizes the manager’s compensation;13 CEOs prefer acquisitions

that satisfy their empire building preferences or a rate of production that fits their product

strategy;14 directors of reserve banks may have a target inflation rate;15 and entrepreneurs

want to receive funding as long as their probability of success is not very low. I refer to k as

the measure of “preference alignment” between the manager and a representative user. As

k → 1, the players’ preferences are perfectly aligned because then the manager, just like the

users, prefers an action that is fully aligned with the state of nature.

None of the players observes the state of nature ω, and all players share the same prior

beliefs. The manager can implement an information system that will provide a noisy signal

s of the state of nature.16 In the basic setting, the information system implementation is

cost-free. This assumption is relaxed in Section 4. Each signal realization leads to a posterior

belief. Accordingly, an information system creates a distribution over posterior beliefs. This

distribution is chosen by the manager and has to be Bayes-plausible, i.e., the expected

posterior distribution equals the prior. To keep the analysis of the setting in Section 4

tractable, it will be useful to assume normally distributed signals. To facilitate comparisons

across the settings, I impose normality on the distributions of ω and s throughout the

article:17

ω = µ0 + ε, ε ∼ N
(

0, 1
α

)
, α ≥ 0;

s = ω + δ, δ ∼ N
(

0, 1
β

)
, β ≥ 0.

The error terms ε and δ are independent: Cov(ε, δ) = 0. Upon observing the signal realiza-
13The preferred forecast can be high (to increase the stock price and the managers’ stock-based com-

pensation), low (to trigger low exercise price before option grant date) or mean (that is easy to meet or
beat).

14High rates if they plan to aggressively penetrate the market or low rates if they plan to discontinue the
product.

15On the one hand, high inflation rates are more volatile and can generate distortions in the economy. On
the other hand, low inflation rates correspond to low interest rates and the central bank might need to reduce
its benchmark interest rate to zero. This may make the bank helpless in the face of recession. Currently the
Fed’s target is 2%. See September 13, 2015, The Economist, “Why the Fed targets 2 % inflation?”

16For example, pay for appraisals to assess the value of the firm’s long-lived assets, purchase inventory
management software, hire economists to provide forecasts or collect statistical data.

17The results in Sections 3 and 5 can be shown for more general distributions of the state of nature and
the posterior beliefs.
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tion, the players form a posterior belief regarding the state of nature:

ω|s ∼ N
(
αµ0 + βs

α + β
,

1
α + β

)
.

Let µ(s|β) = αµ0+βs
α+β denote the posterior expectation. Under the maintained assumptions,

the manager’s choice of a Bayes-plausible distribution over posterior beliefs simplifies to a

choice of β, which represents the precision of the signal. A choice of β → ∞ indicates a

signal that fully reveals the realization of ω, while a choice of β → 0 means the signal does

not convey any information. The manager’s choice of β is observed by the users but is not

contractible. The observability of the precision assumption reflects the fact that corporate

governance mechanisms such as internal controls and due diligence procedures that affect the

informativeness of disclosure are observable to external and internal users of information.18

The prior expectation of the state of nature µ0 and the variance 1
α

are common knowledge.

To analyze the effects of the ability (or lack thereof) of the manager to limit access to in-

formation, I compare two alternative regimes: “mandatory dissemination” (hereafter, “MD”)

and “unregulated dissemination” (hereafter, “UD”). Under MD the manager is required to

disclose the same signal to all users, while under UD the manager can choose the fraction

x ∈ [0, 1] of users who will observe the signal.19,20 I refer to those users as “informed” and

to the rest of the users as “uninformed.” In other words, ex ante identical users become

heterogeneous endogenously by virtue of selective information dissemination.

In the main part of the article, the manager chooses the fraction x of informed users at

date 1 and cannot revise her choice afterwards, i.e. has commitment power. This assumption

comports with the ex ante commitment assumption of Bayesian persuasion models and

reflects the fact that often managers have to provide (or commit to) the access to information

early on. For example, managers may need to (i) set up the access of the informed users to

a database in advance; (ii) send invitations to conference calls, meetings, or speeches ahead

of time to ensure participation; (iii) reserve (and pay for) a conference venue; (iv) contact

a syndicate of institutional investors in an IPO. In all these examples, ex post deviation for

the chosen subset of informed users is either impractical or very costly (requires additional
18I thank an anonymous referee for pointing this out.
19Alternatively, x can be interpreted as the probability that user i observes the signal.
20For example, top executives often meet in private with handpicked investors. See Serena NG and Anton

Troianovski, “How Some Investors Get Special Access to Companies,” The Wall Street Journal, September
27, 2015, http://www.wsj.com/articles/how-some-investors-get-special-access-to-companies-1443407097
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1

Manager
chooses β and x

2

Signal s
released

3

Users
take actions ai

4

Payoffs
realized

Figure 1: Timeline of events

set-up time, cancellation fees/penalties or results in displeasure of the users). In subsection

5.1, I extend the analysis by relaxing the ex ante commitment assumption and considering

cases in which the manager can delay her choice to date 2 (or revise her prior choice) after

observing the signal. For most of the article, the observability of x is irrelevant. It only

becomes relevant in subsection 5.1.

I restrict attention to cases in which the signal is truthfully communicated to the informed

users. This assumption reflects the litigation threat in case of concealing or distorting infor-

mation. In my model, the users do not gather information on their own. This assumption

is motivated by the fact that, in many cases, firm managers have access to sources of infor-

mation unavailable to the users.21

Figure 1 shows the timeline of the events. At date 1, the manager chooses whether to

implement the information system, its precision β and the fraction x of informed users (under

UD). At date 2, the information system reveals signal s to the fraction x of informed users.

At date 3, the users take actions, and, at date 4, the payoffs are realized.

3 Access to Information

I solve the model by backward induction. To avoid confusion I use a subscript t = 1 for

the expectation operator to denote the expectation at date 1 over the random variables

ω and s and a subscript t = 3 to denote the posterior expectation of ω at date 3 (after

observing the realization of the signal s). At date 3, after observing the choice of information
21An additional motivation to focus solely on the information gathered by managers is that prior literature

has analyzed the effects of selective disclosure on the incentives of the users to acquire information on their
own (Jorgensen, Li and Melumad 2011).
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system precision and the signal realization, the informed users form Bayesian rational beliefs

regarding the state of nature and, given the quadratic loss nature of their payoff functions,

take actions that equal the posterior expectation:

â(s, β) ≡ arg max
ai

Et=3[u(ai, ω)|s, β] = Et=3[ω|s, β] = µ(s|β). (3)

Lacking information, the uninformed users take actions that equal the prior expectation:22

â(µ0) ≡ arg max
ai

Et=3[u(ai, ω)|∅] = Et=3[ω] = Et=1[ω] = µ0. (4)

As a result, the aggregate action of the users at date 3 is a weighted average of the posterior

(for the informed users) and the prior (for the uninformed users):

Â(x, s, β) ≡
∫ x

0
â(s, β)di+

∫ 1

x
â(µ0)di = xµ(s|β) + (1− x)µ0. (5)

The expected payoff of the manager at date 1 is given by

V (x, β) ≡ Et=1[v(Â(x, s, β), ω)].

Firm managers choose the precision of the information system that they implement, but

they cannot always choose the fraction of users who observe the information. For example,

even when regulators gravitate toward rules that ensure equal access to information, not all

users may observe the available information for various exogenous reasons. If the fraction

of informed users is exogenous, then, at date 1, the manager chooses the precision of the

information system to maximize her expected utility:

β̂(x) ∈ arg max
β

V (x, β).

By implementing an information system with optimally chosen precision the manager

“persuades” the users, i.e., she convinces the users to take actions that are closer to her pre-

ferred actions and differ from the actions the users would have taken without the information.

Kamenica and Gentzkow (2011) find that a sender–in my model, the manager–benefits from

persuading a single user if her expected payoff is convex in the single user’s beliefs regard-

ing the state of nature. Lemma 1 translates this result to my setting and extends it to an

exogenously given fraction x ∈ [0, 1] of informed users.
22The informed users have no incentive to communicate their information to the uninformed users, because

the payoff of each user is affected only by his own action (I assume the users cannot make side payments and
collude on the information). The uninformed users cannot infer the signal realization from the actions of the
informed users before choosing their actions, because all actions are taken simultaneously (to be relaxed in
subsection 5.3).
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Lemma 1 Suppose x ∈ [0, 1] is exogenously given. The manager then implements a perfectly

revealing information system if and only if k > x
2 . Otherwise, she does not implement an

information system.

The formal proof is omitted as it follows from the discussion below. Note that at date 2,

upon observing the signal, the manager and the users share the same beliefs. Then, by the

Law of Iterated Expectations, the manager’s expected payoff at date 1 can be conveniently

presented as:

V (x, β) = Et=1

Et=3[v(Â(x, s, β), ω)|s, β]︸ ︷︷ ︸
posterior expectation at date 3


︸ ︷︷ ︸
expectation over signal realizations at date 1

= Et=1[Et=3[−(xµ(s|β) + (1− x)µ0 − kω − (1− k)ω)2|s, β]]

= Et=1

[
2x
(
k − x

2

)
(µ(s|β))2

]
︸ ︷︷ ︸

term 1

− k2
(
µ2

0 + V ar(ω)
)

︸ ︷︷ ︸
term 2

− [(x− 2k + 1)µ0 − (1− k)ω][(1− x)µ0 − (1− k)ω]︸ ︷︷ ︸
term 3

. (6)

The second and third terms in (6) are constant across signal realizations, s. However, term

1 depends on the posterior expectation that a signal induces, and the manager can control

its magnitude by choosing the precision of the information system. Given that the posterior

expectation is increasing in s, then (µ(s|β))2 is convex in s. Noting that term 1 is an

expectation of a quadratic function of the random variable µ(s|β) whose expectation equals

the prior µ0 and, using Jensen’s inequality,

Et=1

[
2x
(
k − x

2

)
(µ(s|β))2

]
> 2x

(
k − x

2

)
µ2

0 ≥ 0 if k > x
2 ,

< 2x
(
k − x

2

)
µ2

0 ≤ 0 if k < x
2 .

If the preferences of the manager are sufficiently aligned with those of the users (k > x
2 ), then

the manager’s payoff is convex in µ(s|β), and the manager is better off inducing variance

in the users’ actions by making a signal available than leaving the users with their prior

expectation. The opposite logic holds when the preferences of the manager are sufficiently

misaligned with those of the users (k < x
2 ). To gain further insight note that using (6),
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V (x, β) = Et=1

[
2x
(
k − x

2

)
(µ(s|β))2

]
+ const

= 2x
(
k − x

2

)
(V ar(µ(s|β)) + µ2

0) + const, (7)

where V ar(µ(s|β)) = β
α(α+β) is the variance of the posterior expectation. The variance is

increasing in the precision of the signal and, by the Law of Total Variances, is bounded from

above by the prior variance V ar(ω) = 1
α

. Put differently, when the signal perfectly reveals

the state of nature, the variance of the posterior expectation equals the variance of the state

of nature. When the preferences of the players are aligned (k > x
2 ), the manager wants

to induce as much variance in the posterior expectation as possible, which she achieves by

setting β → ∞. The opposite is true when the preferences of the players are misaligned

(k ≤ x
2 ). The manager then minimizes the variance by setting β → 0. In the knife-edge case,

when k = x
2 , the manager’s expected payoff is the same regardless of the variance in posterior

expectation that she induces. For the remainder of the article, I assume that, whenever the

manager is indifferent, she does not implement an information system.

The preceding discussion is stated in terms of normal distributions of the state of nature

and the posterior beliefs. However, as seen from (7), all that matters is the sign of the coef-

ficient k− x
2 attached to the variance in posterior expectation and the ability of the manager

to increase or reduce this variance by optimally choosing the distribution of the posterior

beliefs. Therefore, the result of Lemma 1 can be shown for more general distributions with

well-defined first and second moments.23

As a next step, I consider the manager’s ability to control the aggregate information flow

by limiting access to information of a subset of users. To do so, I relax the assumption that

x is exogenously given and let the manager choose not only the information system precision

but also the fraction of informed users. At date 1, the full-fledged optimization problem of

the manager is

Program P

max
β≥0,x∈[0,1]

V (x, β).

23The expected payoff of the sender depends only on the first and the second moments of the distribution.
Hence all results in Section 3 hold for general distributions with well-defined first and second moments.
Detailed analysis available upon request.
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Let (x̂, β̂) denote the solution to this program.

Proposition 1 Under unregulated dissemination (UD), for any k, it is optimal for the man-

ager to implement an information system that perfectly reveals the state of nature to a fraction

k of users, i.e., (x̂, β̂) = (k,∞).

The manager finds it optimal to provide maximally precise information but to restrict access

to it.24 Given that the manager has two instruments at her disposal, x and β, it may

seem counterintuitive at first that she chooses to restrict access rather than provide opaque

information. The expected utility of the manager is:

V (x, β) = −Et=1[(xµ(s|β) + (1− x)µ0 − kω − (1− k)ω)2]

= −V ar (xµ(s|β) + (1− x)µ0 − kω − (1− k)ω)

− (Et=1 [xµ(s|β) + (1− x)µ0 − kω − (1− k)ω])2

= −V ar(xµ(s|β)− kω)− (1− k)2(µ0 − ω)2.

Given that −(1− k)2(µ0 − ω)2 is a constant, maximizing V (x, β) boils down to minimizing

V ar(xµ(s|β) − kω) ≥ 0. The only way to minimize this term to zero is to choose β → ∞

and x = k because, otherwise, if β is finite, some variance remains for any x.

To gain additional intuition, recall that the aggregate action of the users at date 3 is as

stated in equation (5):

Â(x, s, β) = xµ(s|β) + (1− x)µ0,

while the manager would want it to be as close as possible to her bliss point as stated in

equation (2):

A∗(ω) = kω + (1− k)ω,

for any realization of ω. If the state of nature were observable, the manager would want the

users to react to the realization of ω with a response coefficient of k (as, by (2), dA
∗(ω)
dω

= k).

In the model, the users only see the signal, s, and not the state, ω, directly. To regulate the
24Allowing for different sensitivity of a representative user’s bliss point to the state of nature does not

change this result qualitatively as long as the manager prefers smoother aggregate action across states. Under
this scenario, the optimal fraction of informed users equals the ratio of the sensitivities of the manager’s and
a representative user’s bliss points.

13



sensitivity with which the users react to the signal, which, by (5), is dÂ(x,s,β)
ds

= xdâ(s,β)
ds

+
dâ(µ0)
ds

, the manager has two instruments at her disposal: β, which, by (3), determines the

response coefficient dâ(s,β)
ds

= β
α+β for an informed user, and x, which determines the fraction

of informed users.25 It is straightforward to show that one way to implement an expected

response coefficient of k is to set x = 1 and a precision level (calculated as a plug) of

β = α k
1−k . This, however, introduces noise into the signal, which is costly to the users and

to the manager. Alternatively, the manager can set x = k and β → ∞. This would yield

the same response coefficient in expectation but avoids the noise in the signal, which makes

this the optimal solution.

Note that, by Proposition 1, if the manager is allowed to choose the group of informed

users, she always finds it optimal to implement an information system, regardless of the

preference misalignment between the players. This result is in stark contrast to the result

for exogenously given fraction of informed users in Lemma 1. The ability to limit access to

information mitigates the reluctance to implement an information system due to preference

misalignment between the players. Technically speaking, this difference arises because the

expected payoff of the manager at the optimal fraction x̂ = k is always convex in the users’

beliefs. As a result, the manager always finds it optimal to implement a system that releases

a perfectly informative signal to the optimally chosen fraction of users.26

Regulators often gravitate toward rules that ensure equal access to information for all

agents in an economy. To consider the efficiency of such rules, I compare two alternative

regimes: mandated dissemination (MD), under which the manager is required to disclose

information to all users, i.e., x = 1 is exogenously set,27 and unregulated dissemination

(UD), under which the manager can optimally choose the fraction of informed users in her
25The uninformed users, by default, have response coefficient dâ(µ0)

ds = 0.
26In my model, the manager implements an information system solely for information dissemination.

The results will qualitatively hold if the manager were to use the output of the information system for
other purposes, as long as the manager sufficiently cares about the dissemination. To illustrate, consider for
example an ex post payoff v = −ρ(A− kω − (1− k)ω̄)2 − (1− ρ)(d− ω)2, where d is an operating decision
that the manager takes after observing the signal and ρ ∈ (0, 1) represents the importance of dissemination.
Then, under mandated dissemination (MD), the preference alignment threshold above which the manager
implements a perfectly revealing information system decreases to 2ρ−1

2ρ < 1
2 but remains strictly positive as

long as ρ > 1
2 . The results pertaining to unregulated dissemination (UD) remain unaffected.

27In many cases, even if the regulator sets x = 1, the actual fraction of informed users is strictly lower
as some users will not observe the information (for example, unsophisticated investors). Considering this
possibility does not change qualitatively the results.
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own best interest.

Proposition 2

(i) If k ≤ 1
2 , UD Pareto dominates MD.

(ii) If k > 1
2 , the manager is better off under UD, but all users are at least weakly better

off under MD.

Under UD, the manager can choose any fraction x ∈ [0, 1], but she finds it optimal to limit

access to information to some users (i.e., sets x̂ = k < 1). Hence, by revealed preference,

she always prefers UD over MD. The users’ preference is less obvious. At the heart of the

comparison lie the observations that the manager sets an infinite precision whenever she

chooses to implement an information system and that, given their quadratic loss payoff, the

users benefit from fully revealing information.

By Lemma 1 and Proposition 1, if k ≤ 1
2 , then the manager implements an information

system only under UD. The informed users are better off under UD (because it is the only

regime under which the manager implements an information system). The uninformed users

are indifferent (because they do not observe information under either regime). As a result,

UD Pareto dominates MD. However, if k > 1
2 , the manager implements a perfectly revealing

information system under both regimes. The informed users are indifferent (because they

perfectly observe ω under both regimes), while the users who are uninformed under UD are

better off under MD (because it allows them to observe information).

Paradoxically, Proposition 2 shows that, when the players preferences over the actions are

misaligned, their preferences over regimes are aligned, and vice versa. If regulators believe

that firm managers and users have very different objectives, then by part (i), they should

gravitate to UD, because it Pareto dominates MD. If k > 1
2 , Pareto ranking of the regimes

is not possible, but MD ensures all users are at least weakly better off. Hence, if regulators

care exclusively about the welfare of the users and believe the objectives of the managers

and the users are sufficiently aligned, they should gravitate to MD.

The result of Proposition 2 may be surprising at first, because conventional wisdom would

say that, if the preferences of the players are misaligned, then there is need for the regulator

to intervene as players will not arrive at a socially efficient result on their own, and vice
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versa. However, my model predicts exactly the opposite–the regulator’s intervention when

the players objectives are misaligned may suppress socially beneficial information acquisition.

A natural question that arises is what is the socially optimal fraction of informed users,

which I examine in subsection 4.4 after I generalize the model to costly information system

implementation.

4 Costly Persuasion

In Section 3, the optimal precision under MD has a bang-bang character and jumps to

infinity at k = 1
2 . This result does not seem particularly descriptive. Therefore, in this

subsection, I extend the results by introducing a cost borne by the manager associated with

the implementation of the information system.28 I show that when implementation is costly

the manager sacrifices some amount of precision, and, under standard regularity conditions,

her choice is an interior solution. This allows (i) for analyzing how the ability of the manager

to limit access to information affects the information precision and (ii) for providing new

predictions.

I assume that the manager bears an implementation cost C(c, β) with

Cc(.) ≥ 0, Cβ(.) ≥ 0, Ccc(.) ≥ 0, Cββ(.) ≥ 0, Ccβ(.) > 0.

The parameter c > 0 represents the cost of information system technology in the economy and

might be a function of the level of competition in that market. I assume c is exogenously given

and refer to it as the “information cost” or just “cost.” To ensure interior solutions I assume

that limβ→∞Cβ(c, β)→∞ and limβ→0Cβ(c, β) = 0 for any cost.29 The total implementation

cost is zero whenever information is cost-free or information system is completely imprecise,

i.e., limc→0C(c, β) = limβ→0C(c, β) = 0. Lastly, I assume that the implementation cost is

independent of the fraction of users observing the signal.30

28Information system implementation costs are frequently observed in practice. For example, providing
a guidance requires hiring an economist, inventory management requires purchasing software, evaluating an
asset’s fair value requires paying for an appraisal, etc.

29This is the case for many commonly used cost functions, including the quadratic cost function cβ2

2
as a special case. All results hold qualitatively with few minor adjustments for cost functions with
limβ→0 Cβ(c, β) > 0 (linear cost function cβ as a special case), i.e., for which the marginal cost from
implementing a system with even very small precision is positive. Whenever applicable, I will outline in a
footnote the minor adjustments needed under the assumption that limβ→0 Cβ(c, β) > 0.

30It seems reasonable to think that, once the information system is implemented, it does not matter

16



4.1 The Optimal Precision

Similar to the analysis with cost-free implementation, I start by considering the manager’s

problem when x ∈ [0, 1] is exogenously given. Let

∆x ≡ |x− k|

denote the distance between the fraction of informed users and the preference misalignment.

At date 1, the manager chooses

βc(x) ∈ arg max
β

V (x, β)− C(c, β), (8)

where the superscript “c” denotes costly information system implementation.31

Lemma 2 Suppose x ∈ [0, 1] is exogenously given and the manager bears an implementation

cost C(c, β). The manager then implements an information system with precision βc(x) ∈

(0,∞) if and only if k > x
2 . βc(x) is decreasing in c and in ∆x and increasing in 1

α
and in

k.

Similar to the results in Lemma 1 for cost-free implementation, the manager implements an

information system if and only if her preferences are sufficiently aligned with those of the

users.32 The cutoff for implementation (k > x
2 ) does not depend on the cost. If c→ 0, then

βc(x) → ∞ and therefore the results from the preceding section are recouped as a special

case. However, as long as c > 0, the manager finds it optimal to sacrifice some precision.

The higher the cost, the less precise the information system that the manager implements.

In the limit, as c→∞, βc(x)→ 0, i.e., if the implementation is extremely costly, the signal

will be uninformative.

The closer the exogenous fraction x to the preference alignment k, the higher the precision

of the information system that the manager implements. This is graphically shown in Figure

to how many users its output is communicated. Assuming otherwise, i.e., that the implementation cost is
increasing in the number of the users to which the signal is conveyed (which is the reasonable alternative
assumption), would only mechanically facilitate finding that it is optimal for the manager to restrict access
to information without qualitatively changing the results.

31The optimal precision βc(x) depends, in addition to x, on other exogenous parameters c, α and k. I
depress them to avoid clutter.

32If limβ→0 Cβ(c, β) > 0, i.e., if the implementation of an information system with even very small
precision is costly, then the manager will implement an information system only if c is below a certain
threshold. It can be shown that the threshold is decreasing in ∆x. Analysis available upon request.
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Figure 2: Optimal precision as a function of x
Numerical example with C(c, β) = cβ2

2 , α = 1, c = 0.2, k = 0.3

2. The intuition for this result is that, when x = k, the players’ preference misalignment

is minimized, and this provides stronger incentives for the manager to gather information.

The more aligned the manager’s preferences with those of the users, the more precise the

information system she implements, so that the users’ actions will be more in line with the

realization of ω. As shown in Lemma 2, the signal precision is increasing in 1
α

, the prior

variance of ω. Further, the optimal precision does not depend on ω, i.e., by disseminating

information about ω, the manager cannot persuade the users to take an action close to ω.

As a next step, I consider the ability of the manager to limit access to information to a

subset of users by optimally choosing x. At date 1, the manager’s full-fledged optimization

problem is:

Program Pc:

max
β≥0,x∈[0,1]

V (x, β)− C(c, β). (9)

Let (xcUD, βcUD) denote the solution to this program. The next result extends Proposition 1

to the costly implementation setting.

Proposition 3 Suppose the manager bears an implementation cost C(c, β). Under UD, for

any k, it is optimal for the manager to implement an information system with precision

βcUD ≡ βc(x = k) and to disseminate the signal to a fraction xcUD = k of informed users.
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The key finding here is that the optimal subset of informed users is unaffected by the cost.

The choice of x is a device that induces the right aggregate signal-response coefficient of k,

and that logic is unaffected by any implementation costs. However, when implementation

is costly, the manager implements an information system that provides a noisy signal. The

comparative statics of the optimal precision with respect to 1
α

, c, k and ω are similar in

nature to those of βc(x).

4.2 Regime Preferences

Straightforward application of Lemma 2 reveals that under MD the manager implements an

information system with precision

βcMD ≡ βc(x = 1) > 0

if k > 1
2 and zero otherwise. By Lemma 2, the information system implemented under UD

is more precise than the one implemented under MD:

∆β ≡ βcUD − βcMD > 0. (10)

Similar to the cost-free setting, the manager always prefers (by revealed preference) UD,

and the uninformed users are always weakly better off under MD.33 However, the comparison

with regards to the informed users is more complicated and requires taking into account that

the equilibrium precisions under both regimes are different as shown in (10) and that the

users want as precise information as possible. The analysis shows that the informed users are

always strictly better off under UD, because it ensures they observe a more precise signal.

The result below extends Proposition 2 to the costly implementation setting.

Proposition 4 Suppose the manager bears an implementation cost C(c, β).

(i) If k ≤ 1
2 , UD Pareto dominates MD.

(ii) If k > 1
2 , the uninformed users are strictly better off under MD, while the informed

users and the manager are strictly better off under UD.
33If k > 1

2 , it is the only regime that enables them to observe a signal, while if k ≤ 1
2 , then they are

indifferent because they do not observe a signal under either regime.
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As before, if k ≤ 1
2 , UD Pareto dominates MD. Hence, if regulators believe the preferences of

firm managers and users in an economy are sufficiently misaligned, they should not enforce

equal access to information of all potential users. If k > 1
2 , there is an additional dimension

to the disagreement issue discussed in the cost-free setting, because now even the different

types of users, endogenously divided into informed and uninformed ones, prefer different

regimes.

4.3 Welfare Analysis with Sufficiently Aligned Preferences

Proposition 4 shows that, when the preferences of the players are sufficiently aligned, nei-

ther of the regimes ensures all users are at least weakly better off simultaneously. In this

subsection, I conduct welfare analysis to evaluate under which regime the users are better

off at an aggregate level when k > 1
2 . Let

φc(x) ≡ Et=1 [u(â(s|βc(x)), ω)]− Et=1 [u(â(µ0), ω)]

denote a representative user’s expected gain of becoming informed (hereafter, “information

gain”). Then,

W c(x) =
∫ x

0
Et=1 [u(â(s|βc(x)), ω)] di+

∫ 1

x
Et=1 [u(â(µ0), ω)] di

=
∫ 1

0
Et=1 [u(â(µ0), ω)] di+

∫ x

0
φc(x)di

= Et=1 [u(â(µ0), ω)]︸ ︷︷ ︸
base welfare

+ xφc(x)︸ ︷︷ ︸
aggregate gain

(11)

is the aggregate users’ welfare.34 The base welfare represents the aggregate payoff of all

users when the manager does not implement an information system. The aggregate gain is

the information gain of the informed users, on an aggregate level. While the base welfare

is independent of x, the comparative statics of the aggregate gain with respect to x is

ambiguous. As seen from (15), there are two effects: (i) a direct effect–as x increases,

more users benefit from information, and (ii) an indirect effect–the fraction x affects the

information gain indirectly through the optimal precision.

Corollary 1 φc(x) is decreasing in ∆x ≡ |x− k|.
34The gain φc(x) and the aggregate welfare W c(x) depend, in addition to x, on other exogenous param-

eters: c, α and k. I depress them to avoid clutter.
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The intuition behind this result is that the information gain is increasing in the precision,

which is single-peaked at x = k by Lemma 2. As a result, the informed users are better off

when the manager discloses information only to a fraction k of users. Equation (15) and

Corollary 1 imply that broader dissemination of information is not always better for the

users on an aggregate level. To compare the users’ welfare under both regimes, let

φcMD ≡ φc(x = 1) and φcUD ≡ φc(x = k)

denote the information gain of a representative informed user and

W c
MD ≡ W c(x = 1) and W c

UD ≡ W c(x = k)

the aggregate welfare of the users under MD and UD, respectively. Comparing UD and MD

on an aggregate level requires signing the welfare differential

∆W ≡ W c
UD −W c

MD = kφcUD︸ ︷︷ ︸
aggregate gain UD

− φcMD︸ ︷︷ ︸
aggregate gain MD

The comparison of the aggregate gains is affected by two countervailing effects: (i) an omis-

sion effect–under UD, the proportion of informed users is lower than the proportion under

MD (xcUD = k < 1)–and (ii) a precision effect–by Lemma 2, the signal precision under UD

is higher than the one under MD. As a result, by Corollary 1, the information gain under

UD is larger than the one under MD:

∆φ ≡ φcUD − φcMD > 0. (12)

The next result presents sufficient conditions for the aggregate welfare under UD to exceed

the one under MD.

Proposition 5 Suppose k > 1
2 and the manager bears an implementation cost C(c, β) = cβ2

2 .

Then there exist k̃ ∈ (1
2 , 1), such that W c

UD ≥ W c
MD if k ≤ k̃, and c is sufficiently high.

This result is graphically shown in Figure 3. As c→ 0, the manager sets the same (infinite)

precision under UD and MD. Hence the gain from information of a representative informed

user under both regimes is the same, and ∆W ∝ k − 1 < 0 so that the users prefer MD, in

aggregate. As c increases, the optimal precision and, as a result, the respective aggregate

gain decrease. As c→∞, the aggregate gain under both regimes reaches zero. However, as I
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Figure 3: Users’ welfare comparison
Numerical example with C(c, β) = cβ2
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show in the proof, the gain under MD does so faster than the one under UD if the preference

alignment is sufficiently bounded away from one.35 As a result, for some sufficiently high

cost, the aggregate gain under MD is larger than the aggregate gain under UD.

4.4 Regulated Information Dissemination

A natural question that arises is what is the socially optimal fraction of informed users.

To answer this question, I assume that a benevolent regulator (“he”) chooses the subset

of users who get to observe the signal prior to the manager’s choice of information system

and call this regime regulated dissemination (“RD”). The regulator chooses x to maximize

the aggregate expected payoffs of all players, subject to the constraint that the information

system precision is chosen by the manager in her own interest:

max
x∈[0,1]

λ[V (x, βc(x))− C(c, βc(x))] +W c(x)

subject to βc(x) ≡ arg max
β

V (x, β)− C(c, β).

The parameter λ ≥ 0 represents the weight that the regulator puts on the manager’s welfare.

It is straightforward that, if the regulator cares only about the manager’s welfare (i.e.,

λ→∞), he will choose the same fraction of informed users that the manager would have set
35When the preference alignment is sufficiently close to one, the aggregate gains under both regimes are

of similar magnitude and decrease in c at the same rate.

22



in her own interest (xcRD = k). However, if the regulator cares sufficiently about the users’

welfare, the socially beneficial level of x may go beyond k and, under certain conditions, may

even reach one.

Corollary 2 Suppose λ ≤ 1 and the manager bears an implementation cost C(c, β) = cβ2

2

with c ≥ 0. Then the socially beneficial fraction of informed users xcRD ∈ [k, 1] is decreasing

in c.

When the players’ preferences are sufficiently misaligned, the regulator wants to restrict

access to information for some users even when he does not care at all about the manager’s

welfare (i.e., λ = 0), because he wants to ensure the manager has incentives to implement

an information system and disseminate socially valuable information.36 However, when

the players’ preferences are sufficiently aligned and information acquisition is cost-free, the

regulator chooses a corner solution for x and enforces equal access to information. The

rationale behind this observation is that when c → 0 the gain in collective users’ welfare is

larger than the loss in manager’s payoff caused by increasing x beyond k.37 Introduction

of costs changes the corner solution character of the socially beneficial fraction of informed

users. Put differently, unlike the fraction of informed users set by the manager in her own

interest, the fraction x that the regulator enforces is decreasing in the implementation cost.

The reason for this finding is that, as c increases, the manager chooses a lower precision.

Then, to provide incentives for the manager to increase the precision of the socially valuable

information, even the users themselves, at some prior state, would collectively agree to some

x < 1, as long as they are behind the veil of ignorance (Harsanyi, 1955), i.e., before each

learns whether he will be included in the group of informed users.
36If k ≤ 1

2 , then 2k ≤ 1. To ensure that the manager implements an information system, the planner
needs to make sure that x < 2k ≤ 1. This observation confirms the result in Proposition 4 (i).

37When k > 1
2 , the implementation constraint is satisfied for any x, and with c = 0 the manager imple-

ments a perfectly revealing information system. Hence the derivative of the regulator’s objective function
with respect to x reads 2λ(k−x)

α + 1
α . If x < k, both terms are positive, i.e., all players benefit from increasing

x. If x > k, then the first term is negative and represents the decrease in manager’s payoff from increasing
the fraction of informed users beyond k. The second term represents the gain in aggregate users’ welfare
from an increase in x. If λ ≤ 1 and k > 1

2 , then 2λ(k− x) + 1 > 2k− 1 > 0, i.e., the gain in users’ welfare is
larger than the loss in manager’s payoff.
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5 Discussion of Model Variations

In this section, I discuss the robustness of the model with respect to different variations.

I focus on pure strategies and return to the maintained assumption in Section 3 that the

implementation of an information system is cost-free.

5.1 Delayed or Revised Choice of Informed Users at Date 2

In the main part of the article, the manager chooses the fraction of informed users at date

1 and cannot revise her choice later on, i.e., she has commitment power. This comports

with the commitment assumption of Bayesian persuasion models and reflects the fact that

managers often must choose the subset of “privileged” users early on (e.g., to provide access

to a database in advance; send invitations to conference calls, meetings, or speeches ahead

of time to ensure participation; reserve a conference venue) and deviation at a later date

is impractical or costly. Now I relax this assumption and allow the manager to delay or

revise (increase or decrease) the choice of x after observing the signal s. I assume that the

manager’s choice of x is not observed by the uninformed users.38 At date 2, the manager’s

delayed or revised choice of subset of users “in the know,” for given β and s, is:

xt=2(s|β) ∈ arg max
x∈[0,1]

Et=2[v(Â(x, s, β), ω)|s, β].

Observation 1 Suppose that the manager can delay (or revise) her choice of unobservable

x to date 2 and that ω̄ = µ0. Then, for any signal realization, xt=2(s|β) = k.

When the uninformed users act based on their prior beliefs, their actions equal the value

toward which the manager is biased (in the knife-edge case where ω̄ = µ0). Hence the man-

ager chooses x = k because this is the fraction that minimizes to zero the difference between

the actual aggregate action of the users, as stated in equation (5), and the expectation of

the manager’s most preferred action, as stated in equation (2), for any signal realization.

Put differently, if the manager could delay or revise her choice at date 2, she would choose

exactly the same fraction as the one she would choose if she had to commit at date 1. Then,

the analysis from the main part of the article remains the same for this special case.

For the remainder of this subsection, I assume that ω̄ 6= µ0. Furthermore, I assume that

the users (i) are not ordered on [0, 1] and (ii) realize they are included “in the know” only
38At the end of this subsection I briefly discuss the case of observable x.
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Figure 4: Illustration of Lemma 3 (unobservable delayed or revised choice of x)
Numerical example with k = 0.6, µ0 = 0, α = 1, β →∞

after receiving the signal. Hence, if a user ends up being uninformed, he only infers that the

signal was such that the manager did not choose x = 1.

Lemma 3 Suppose that the manager can delay (or revise) her choice of unobservable x to

date 2 (after observing s) and that ω̄ 6= µ0. Then, at date 2, the manager disseminates the

signal to a fraction xt=2(s|β) 6= k of users. At date 3, the informed users take an action that

equals µ(s|β), and the uninformed users take an action that equals µ̂ ≡ E[ω|xt=2(s|β) 6= 1].

(i) If ω̄ > µ0, then µ̂ ∈ (−∞, µ0). For any signal such that µ(s|β) < µ̂, the revised

fraction is xt=2(s|β) = max
{

0, k − (1− k) (ω̄−µ̂)
(µ̂−µ(s|β))

}
∈ [0, k). Otherwise, xt=2(s|β) =

min
{

1, k − (1− k) (ω̄−µ̂)
(µ̂−µ(s|β))

}
∈ (k, 1].

(ii) If ω̄ < µ0, then µ̂ ∈ (µ0,∞). For any signal such that µ(s|β) < µ̂, the revised

fraction is xt=2(s|β) = min
{

1, k − (1− k) (ω̄−µ̂)
(µ̂−µ(s|β))

}
∈ (k, 1]. Otherwise, xt=2(s|β) =

max
{

0, k − (1− k) (ω̄−µ̂)
(µ̂−µ(s|β))

}
∈ [0, k).

The results of Lemma 3 are illustrated in Figure 4. The manager deviates from x = k but

restricts the access to information for a large subset of signal realizations. To understand the

intuition, first consider the case where the manager is biased toward high values (ω̄ > µ0).

Note that, when the informed users take actions that equal µ(s|β) and the uninformed users
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take actions that equal their belief µ̂, the manager wants to minimize the gap between the

conditional expectation of her preferred action,

A∗(s|β) ≡ Et=2[A∗(ω)|s, β] = kµ(s|β) + (1− k)ω̄, (13)

and the actual aggregate action,

Â(x, s, β) = xµ(s|β) + (1− x)µ̂. (14)

Suppose that the uninformed users’ expectation of the state is below the action toward which

the manager is biased, µ̂ < ω̄. (As I show later, this is the case in equilibrium.) Then, if

the observed signal is such that µ(s|β) < µ̂, disclosing the signal to a subset x = k of users

will result in lower actual aggregate action than the one the manager prefers. To minimize

this gap, the manager disseminates the signal to fewer users (x < k). This is because the

actions that the uninformed users take are closer to the value toward which the manager is

biased, i.e., µ(s|β) < µ̂ < ω̄. The higher the observed signal (but still lower than the one

leading to homogenous beliefs across users, i.e., µ(s|β) = µ̂), the higher the actions that the

informed users take and hence the higher Â(x, s, β). However, at the same time, A∗(s|β) also

increases, and it does so at a higher rate. Hence, to minimize the gap between the actual and

the preferred action, the manager needs to further restrict the access to information (as this

results in more uninformed users taking a higher action that is closer to the value towards

which the manager is biased, i.e., µ(s|β) < µ̂ < ω̄). However, given that x ≥ 0, eliminating

the gap may not be feasible. In such a case, the best the manager can do is to withhold the

signal from everyone.

Similar arguments hold when the observed signal is such that µ(s|β) > µ̂. Then, given

that ω̄ > µ̂, the manager wants to disseminate the signal more broadly (x > k) because

the actions of the informed users are closer to the value towards which she is biased. The

closer the beliefs of the informed users to the value towards the manager is biased, ω̄, the

more broadly the manager disseminates the signal. When the realized signal is such that

µ(s|β) = ω̄, the manager’s preferred action collapses to A∗(s|β) = ω̄, and the manager

disseminates the signal to everyone. For any signal that leads to µ(s|β) ∈ (µ̂, ω̄), minimizing

the gap between actual and preferred action requires setting x > 1. This, however, is not

feasible, and so the best the manager can do is to publicly disseminate the signal. Lastly,
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in the knife-edge case where the beliefs of the informed and uninformed users coincide, i.e.,

µ(s|β) = µ̂, the manager is indifferent because Â(x, s, β) = µ̂ for any x.39

I next specify the beliefs of the uninformed users. In equilibrium, they satisfy µ̂ =

E[ω|xt=2(s|β) 6= 1]. As shown in the proof, there exists a unique and interior µ̂ < µ0 that

satisfies this condition (and, given the assumption ω̄ > µ0, the conjecture µ̂ < ω̄ is correct).

When the manager is biased towards high values, the uninformed users revise their beliefs

downward upon realizing they are uninformed.

Turning to the case where the manager is biased toward low values (ω̄ < µ0) the argu-

ments from the preceding discussion are reversed. In equilibrium, the uninformed users, upon

realizing the signal realization is such that x < 1, revise their prior upward, i.e., µ̂ > µ0. If

the observed signal is such that µ(s|β) > µ̂, disclosing the signal to a subset of x = k results

in a lower actual aggregate action than the one the manager prefers, and so the manager

disseminates the signal to fewer users (x < k) because the actions of the uninformed users

are closer to the action that the manager prefers: µ(s|β) > µ̂ > ω̄. In contrast, when the

signal is such that µ(s|β) < µ̂, the manager disseminates the signal to more users (x > k), as

the actions of uninformed users are further away from the action that the manager prefers:

µ̂ > µ(s|β) > ω̄.

At date 1, the manager takes into account that the fraction of informed users is xt=2(s|β)

and chooses β to maximize her expected payoff:

max
β≥0

Et=1[v(Â(xt=2(s|β), s, β), ω)].

Proposition 6 Suppose that the manager can delay (or revise) her choice of unobservable x

to date 2. Then ,at date 1, the manager implements a perfectly revealing information system,

i.e., β →∞.

If the manager can delay (or revise) the choice of x to date 2, she induces an actual aggregate

action that is as close as possible to her expected bliss point. The more precise the signal,

the more precise the expectation of the manager about her bliss point, and hence the more

efficient the alignment with the aggregate action of the users. Therefore it is optimal for the

manager to implement a perfectly revealing information system.40

39With a continuous distribution, the probability that µ(s|β) = µ̂ is zero.
40Technically speaking, this result occurs because the manager’s payoff conditional on the signal is always

lower than its concave closure.
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In the preceding discussion, I focus on the case where the delayed (or revised) choice of

x is unobservable. In the observable case, the manager’s choice of x not only determines the

subset of privileged users who are informed of the signal directly, but may also indirectly

convey information about the signal to the rest of the users. Therefore, the communication

game between the manager and the users becomes complex and is beyond the scope of this

article. What can be shown is that, despite the informational spillover, there does not exist

a fully revealing equilibrium in which all users either directly observe, or infer the signal.41,42

5.2 Unobservable Signal Precision

In the main part of the article, I assume that the manager’s choice of precision is observable.

Now I relax this assumption and reexamine the prior results. In this subsection, I return to

the baseline model in which the manager commits to the fraction x at date 1. If the manager’s

payoff is commonly known and the fraction x is observable, the users can conjecture the

manager’s choice. Then, the same equilibrium described in Section 3 persists, but it is no

longer unique.

Observation 2 Suppose the manager’s choice of precision β is not observable but the frac-

tion x is observable. Then, there exist two equilibria:

(i) an informative equilibrium in which the manager sets x = k and β →∞;

(ii) an uninformative equilibrium in which the manager does not implement an information

system.

The formal proof is omitted because it follows from the discussion bellow. Consider a con-

jecture of the precision level βo made by the users. If βo > 0, the manager’s objective
41I thank an anonymous referee for pointing this out.
42The proof is by contradiction. Briefly, suppose that the manager’s strategy of choosing xt=2(s|β) is

invertible in s everywhere. This is a necessary and sufficient condition for a fully revealing equilibrium, so
the uninformed users infer the signal realization and the actual aggregate action collapses to µ(s|β). The
manager’s preferred action, A∗(s|β), as defined in (13), is a weighted average of µ(s|β) and the value ω̄
towards which the manager is biased. Given the uninformed users’ strategy, a manager who has observed s
such that µ(s|β) 6= ω̄, is better off choosing a fraction from which the uninformed users will infer that the
signal is s′ 6= s, where µ(s′|β) lies between µ(s|β) and the manager’s preferred action A∗(s|β). In such a
case, the actual aggregate action will be a weighted average of µ(s|β) and µ(s′|β) and therefore closer to
the manager’s preferred action. This violates the postulated fully revealing equilibrium. Formal proof is
provided in the Appendix.
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is increasing in β, and she implements infinite precision.43 In other words, as long as the

users react to the signal (βo > 0), the manager has incentives to communicate a perfectly

informative signal (β → ∞) because this is the only way she can minimize the noise in the

users’ actions. In equilibrium, the users’ conjecture has to be true. Hence there exists an

informative equilibrium in which the manager sets x = k and β →∞.

To see why an additional uninformative equilibrium arises, consider a conjecture of pre-

cision level βo = 0 made by the users. Regardless of the precision of the signal that the

manager sets, the users will ignore the signal. In the absence of implementation costs,

the manager is indifferent between setting any precision and so (as assumed in the case of

indifference) chooses β = 0.

5.3 Sequential Users’ Actions

The maintained assumption in the main part of the article is that the users act simultane-

ously. While this may be true in the case of a shareholder vote, it need not always be the

case. Analysts, divisional managers and market participants may act sequentially, releasing

forecasts or making decisions at different times.44 In this subsection, I extend the analysis by

allowing the users to act at two consecutive dates: 3.1 and 3.2. I return to the assumptions

that the manager commits to the fraction x and the precision β is observable. Within the

confines of the baseline model, the uninformed users would choose to act at date 3.2, hoping

to observe the actions of the informed users and update their beliefs about ω. With any

user’s payoff independent of the other users’ actions and the timing of his own action, the

informed users will be indifferent between acting at date 3.1 or at date 3.2. The equilibrium

depends on the tie-breaking rule.

Observation 3 Suppose that, when indifferent, the informed users act late. Then, in equi-

librium, all users act simultaneously at date 3.2.

In this case, all results described in Section 3 hold. However, if, when indifferent, the informed

users act early, i.e., at date 3.1, then (in the absence of additional frictions) the uninformed

43Specifically, the derivative with respect to β of the manager’s objective is ∂V (x,β)
∂β = (βo)2x2

β2(α+βo)2 ≥ 0 and
so the manager sets β →∞.

44For example, O’Brien, McNichols and Lin (2005) empirically show that financial analysts differ in the
speed with which they release forecasts.
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users will learn the observed signal, and the equilibrium under UD will be identical to the one

under MD. For the reminder of this subsection, I focus on the behavior of the uninformed

users and assume that the informed users act early for exogenous reasons. I refer to the

updating of beliefs by uninformed users after observing the actions of informed users as

“information spillover.” In many settings, the assumptions that (i) the payoff of the users

is independent of the actions of the other users, (ii) there is no cost for delaying the action

and (iii) the uninformed users perfectly observe the actions of their peers do not hold. In

the discussion below, I relax these assumptions and reexamine the results.

5.3.1 Reward for Relative Performance and Cost of Action Delay

In many cases, the payoff of the users depends not only on their own actions but also on

the actions of the other users.45 Analysts, divisional managers and government officials

may care not only about the accuracy of their forecasts and decisions but also about their

performance relative to that of their peers. For example, Hong, Kubik and Solomon (2000)

and Wu and Zang (2009) empirically document that financial analysts who issue the least

accurate forecasts are more likely to be fired and less likely to be promoted. In addition,

the users of information may incur costs for delaying their actions such as lost clientele or

missed opportunities. To analyze such settings, I assume in this subsection that the ex-post

payoff of user i is

ui(ai, A, ω, t) = −(1− π) (ai − ω)2︸ ︷︷ ︸
accuracy

−π ((ai − ω)2 − (A− ω)2)︸ ︷︷ ︸
relative performance

−1ti=3.2 D︸︷︷︸
delay cost

,

= −(ai − ω)2 + π(A− ω)2 − 1t=3.2D,

where D > 0 is an exogenous cost for delaying the action, π ∈ [0, 1] represents the importance

of the users’ relative performance and 1ti=3.2 is an indicator variable that equals 1 if user i

acts late and 0 otherwise. It is apparent that user i gains if his action is accurate but loses

if the other users’ actions are also accurate, on average.

Lemma 4 There exists a unique threshold D(β) ∈ [0, 1
α

] such that, for given β, all un-

informed users act early if D ≥ D(β). Otherwise, they act late. The threshold D(β) is

increasing in β and is independent of x.
45I thank two anonymous referees for suggesting this extension.
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The users are atomistic, and so the action of a single user does not affect the accuracy of the

aggregate action. Hence, when choosing the timing of his action, a representative uninformed

user considers only the expected increase in the accuracy of his action due to learning the

signal if he acts late (which depends on the precision of the signal β and is independent of

x) net of the delay cost. Given that all users are identical, a symmetric equilibrium arises,

in which all uninformed users act early if the delay cost is sufficiently high and vice versa.

The higher the precision of the signal, the more the uninformed users gain by acting late,

and so the larger the set of costs D for which the uninformed users delay.

At date 1, the manager chooses the precision of the information system β and commits

to the fraction of informed users x. I assume that if the manager is indifferent between

disseminating the signal only to a subset of users or to everyone, she publicly disseminates

the signal.

Proposition 7

(i) Suppose D ≥ 1
α

. Then, the manager implements a perfectly revealing information

system and disseminates the signal to a fraction k of users. All users act early so there

is no information spillover.

(ii) Suppose D ∈ [max{0, 2k−1
αk2 }, 1

α
). Then, the manager implements an information system

with precision β(D) ∈ (0,∞) and disseminates the signal to a fraction k of users. All

users act early so there is no information spillover. The precision β(D) is increasing

in the delay cost D.

(iii) Suppose D ∈ [0,max{0, 2k−1
αk2 }). Then, the manager implements a perfectly revealing

information system and disseminates the signal to all users.

If the delay cost is sufficiently high (D ≥ 1
α

), then for any feasible β, all users act early.

There is no information spillover, and therefore the manager can implement the optimal

solution of the baseline model (when the users are required to act simultaneously and there

is no spillover threat), i.e., (∞, k). For lower delay cost (D < 1
α

), if the manager implements

a perfectly revealing information system (β →∞), the uninformed users act late and learn

the disseminated signal. Recall that, by Lemma 4, the threshold D(β) is increasing in β

and independent of x. Hence, to avoid the information spillover, the only thing the manager
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can do is to sacrifice some amount of precision and choose β just low enough to satisfy

D = D(β), which induces the uninformed users to act early. The manager avoids the

spillover, and so her incentives to disseminate the signal to a fraction k of informed users

remain unaffected. The lower the delay cost, the lower the precision level needed to avoid

spillover. For sufficiently low delay cost (D < max{0, 2k−1
αk2 }), it becomes too costly for the

manager to keep a subset of users “in the dark” (by further reduction in the precision of the

signal), and she prefers to allow the spillover and provide maximally precise information.

(This scenario arises only if the preferences of the manager and the users are sufficiently

aligned, i.e., max{0, 2k−1
αk2 } = 2k−1

αk2 only if k > 1
2 .) Given that the manager is indifferent

between disseminating the signal only to a subset of users (and allowing spillover) or to

everyone, she publicly disseminates the signal. Hence in equilibrium the users never incur

delay costs.

A comparison of the expected utilities of the players reveals that, for any k and D, while

the manager and the informed users at least weakly prefer UD, the uninformed users at least

weakly prefer MD. Hence no Pareto ranking can be made.46 To consider efficiency, I examine

the aggregate users’ welfare under regime r =UD, MD. By Proposition 7 the delay cost is

not paid in equilibrium and so

WA
r ≡

∫ 1

0
Et=1[−(ai − ω)2 + π(Â(·)− ω)2 − 1ti=3.2D]di

= −
∫ 1

0
Et=1[(ai − ω)2]di︸ ︷︷ ︸

base aggregate welfare, ≤0

+π Et=1[(Â(·)− ω)2]︸ ︷︷ ︸
average deviation, ≥0

, r = UD,MD. (15)

The ranking of the base welfare (first term) under UD and MD follows directly from Proposi-

tion 2. The relative performance concerns give rise to a gain from average deviation (second

term) which affects the overall welfare in the opposite direction. Specifically, the more accu-

rate the users’ actions are on an aggregate level, the larger the base aggregate welfare (first

term), but at the same the smaller the deviation of the average users’ action (second term).

The following result evaluates the tradeoff between these countervailing forces.

Corollary 3 There exists a unique π ∈ (0, 1) such that the aggregate users’ welfare under

UD is strictly greater than the aggregate users’ welfare under MD if π < π and k ≤ 1
2 .

46I thank an anonymous referee for pointing this out.
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Otherwise, the aggregate users’ welfare under UD is weakly lower than the aggregate user’s

welfare under MD.

The case D < 2k−1
αk2 is feasible only when the preferences of the manager and the users

are sufficiently aligned (k > 1
2). Then, by Proposition 7, under UD, the manager publicly

disseminates the signal and so the aggregate users’ welfare is the same as the one under

MD. If D > max{0, 2k−1
αk2 } and k > 1

2 , the base welfare in (15) under MD is larger than

the one under UD (by Proposition 2) because under MD all users are informed and take an

action that is perfectly aligned with the state of nature while under UD only a fraction k of

the users is informed (Proposition 7). This however also means that the average action is

perfectly aligned with the state of nature (because under MD all users are “in the know”),

resulting in zero average deviation, which is smaller than the deviation under UD (as then

some users remain in “the dark”). The first effect always dominates the second. Hence,

when k > 1
2 , the users’ welfare under UD is weakly lower than the one under MD. Reverse

arguments hold for the case of sufficiently misaligned preferences (k ≤ 1
2). Then, the base

welfare in (15) is larger under UD (by Proposition 2) but the gain due to average deviation

is larger under MD (because then all users are uninformed). For sufficiently low π, the first

effect outweighs the second, and so the users’ welfare under UD is strictly larger than the

one under MD.

In this subsection, I assume that the informed users act early for exogenous reasons.

Even with this stylized assumption, the analysis is not trivial. If the informed users could

choose the timing of their actions, they might strategically act late (and incur a delay cost)

to avoid the spillover and retain their relative performance advantage. Furthermore, if the

number of users were finite, the users’ incentives to act early would depend on the fraction

of informed users, in addition to the precision. Then, the manager could avoid spillover by

strategically using either the fraction x, the precision β, or both. It will be interesting to

investigate these and other related questions in future work.

5.3.2 Actions Observed With Noise

Often the users of information do not perfectly observe the actions of their peers. To analyze

such settings, I return to the baseline assumption that the users care only about their own

accuracy and do not incur delay costs. I assume that the users’ actions are observed with
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an additive random noise ξi ∼ N
(
0, 1

γ

)
, γ ≥ 0, where ξi is not correlated with any other

noise term. For tractability reasons, I assume that the total number of users is N > 0 and

sufficiently large, where users i = 1, 2, ...z are informed and their fraction is x = z
N

.

As before, the informed users act early for exogenous reasons. Their actions are given

by Et=3.1[ω|s, β] = µ(s|β) and are observed by their peers as µ(s|β) + ξi, i = 1, 2, ...z. The

uninformed users prefer to act late, hoping to observe the actions of their informed peers.

Let Z be the vector of the actions of the informed users as observed by their peers. Upon

observing Z, the uninformed users update their beliefs about ω and, at date 3.2, take actions

Et=3.2[ω|Z]. If the actions of the users are very noisy, i.e., if γ → 0, then the uninformed

users will not learn anything from observing the actions of the informed users, and all results

under UD from Section 3 hold. For strictly positive finite γ, the uninformed users update

their beliefs but cannot perfectly reveal the signal.

Proposition 8 There exists a threshold γ > 0, such that, if γ ∈ (0, γ), the manager

implements an information system that perfectly reveals the state of nature to a fraction

x(γ) ∈ (0, k) of users. The fraction x(γ) is decreasing in γ.

The manager’s objective is to regulate the information spillover and minimize the dif-

ferential between the actual aggregate action and her preferred aggregate action. To limit

the spillover, the manager can either provide opaque information or reduce the fraction of

informed users (because the fewer the informed users, the less the uninformed users can learn

from observing Z). Providing opaque information introduces additional noise in the aggre-

gate action, unrelated to the realized state ω. Therefore the manager prefers to decrease the

fraction x below k and provide as precise as possible information.

As γ increases, the uninformed users learn more from the actions of the users “in the

know,” and it becomes very costly for the manager to control the spillover by decreasing

x. In the limit case, as γ → ∞, the uninformed users perfectly reveal the signal, and so

the optimal solution will be identical to the one under MD regime. This implies that noise

can be welfare increasing. To illustrate suppose that k ≤ 1
2 . Then, if γ → ∞, all users

know the signal (either observe the signal or learn it from the actions of their peers) and the

manager prefers not to implement an information system. As γ decreases, the uninformed

users cannot reveal the signal from the actions of their informed peers, and this provides
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incentives to the manager to provide socially beneficial information. The comparison of UD

and MD remains the same as in Proposition 2.

6 Concluding Remarks

In this article, I demonstrate the tension between the size of the set of users to whom

information is provided and the quality of that information chosen by a manager. The

results call into doubt the commonly held belief that fairness and more overall information

go hand in hand. I find that, when managers can selectively disseminate information, they

may gather more precise information. Hence an unintended consequence of rules requiring

public dissemination (such as Regulation FD) could be a reduction of information in the

public domain. Ironically, this effect is especially strong when the incentive conflict between

managers and information users is severe. This article thus calls into doubt the conventional

wisdom that regulating information dissemination is especially needed when the incentive

conflicts are severe.
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Appendix

Proof of Proposition 1: Note that V (x) ≡ V (x, β̂(x)) is single-peaked at x = k. To

see this start with x = k. By Lemma 1, the manager implements a perfectly revealing

information system so that s = ω, Â(.) = kω + (1− k)µ0 and

V (k) = −Et=1[(kω + (1− k)µ0 − kω − (1− k)ω)2]

= −(1− k)2(µ0 − ω)2.

Now consider x = k + η1, where η1 ∈ (0, k). By Lemma 1, the manager implements a

perfectly revealing information system so that s = ω, Â(.) = (k + η1)ω + (1− k− η1)µ0 and

V (k + η1) = −Et=1[((k + η1)ω + (1− k − η1)µ0 − kω − (1− k)ω)2]

= −(1− k)2(µ0 − ω)2 − η2
1Et=1[ε2]

< −(1− k)2(µ0 − ω)2

= V (k).

Similarly, V (k − η1) < V (k). Now consider x = k + η2, where η2 ≥ k. By Lemma 1, the

manager does not implement an information system so Â(.) = µ0 and

V (k + η2) = −Et=1[(µ0 − kω − (1− k)ω)2]

= −(1− k)2(µ0 − ω)2 − k2Et=1[ε2]

< −(1− k)2(µ0 − ω)2 − η2
1Et=1[ε2]

= V (k + η1)

< V (k).

It follows that the manager will implement a perfectly revealing information system and

reveal the signal to a fraction k of users.

Proof of Lemma 2: Simplifying,

V (x, β) = −Et=1[(xµ(s|β) + (1− x)µ0 − kω − (1− k)ω)2]

= −Et=1

(x(ε+ δ) β

α + β
− kε+ (1− k)(µ0 − ω)

)2


= −Et=1

(x(ε+ δ) β

α + β
− kε

)2
− (1− k)2(µ0 − ω)2
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Then, differentiating the manager’s objective in (8) with respect to β,

∂V (x, β)
∂β

− ∂C(c, β)
∂β

= − ∂

∂β
Et=1

(x(ε+ δ) β

α + β
− kε

)2
− ∂C(c, β)

∂β

= ∂

∂β

(
x(2k − x)β
α(α + β) −

k2

α

)
− ∂C(c, β)

∂β

= (2k − x)x
(α + β)2 −

∂C(c, β)
∂β

. (16)

If k ≤ x
2 , then (16) is negative for any precision in the domain, and the manager does not

implement an information system (equivalently, sets β = 0). If k > x
2 , then there exist βc(x)

that satisfies FOC:

(2k − x)x
(α + β)2 −

∂C(c, β)
∂β

∣∣∣∣∣
β=βc(x)

= 0 (17)

Applying the Implicit Function Theorem,

∂βc(x)
∂c

= −
∂2C(c,β)
∂β∂c

2x(2k−x)
(α+β)3 + ∂2C(c,β)

∂β2

< 0

∂βc(x)
∂α

= −
2(2k−x)x
(α+β)3

2x(2k−x)
(α+β)3 + ∂2C(c,β)

∂β2

< 0

∂βc(x)
∂k

=
2x

(α+β)2

2x(2k−x)
(α+β)3 + ∂2C(c,β)

∂β2

> 0,

because k > x
2 . Lastly, note that βc(x) is single peaked at x = k because, by the Implicit

Function Theorem,

∂βc(x)
∂x

= −
2(x−k)
(α+β)2

2x(2k−x)
(α+β)3 + ∂2C(c,β)

∂β2



> 0 if x < k,

= 0 if x = k,

< 0 if x > k.

(The last inequality holds because the manager chooses β = βc(x) if and only if k > x
2 .

Otherwise, she does not implement an information system, i.e., β = 0).

Proof of Proposition 2: By revealed preference, the manager always prefers UD over MD.

Given their quadratic loss payoff, the users prefer more precise information. By Lemma 1 and

Proposition 1, if k ≤ 1
2 , then the manager implements an information system only under UD.
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The informed users are better off under UD (because it is the only regime under which the

manager implements an information system). The uninformed users are indifferent (because

they do not observe information under either regime). As a result, UD Pareto dominates

MD. However, if k > 1
2 , the manager implements a perfectly revealing information system

under both regimes. The informed users are indifferent (because they perfectly observe ω

under both regimes), while the users who are uninformed under UD are better off under MD

(because it allows them to observe information).

Proof of Proposition 3: Differentiating the manager’s objective in (9),

∂V (x, β)
∂β

− ∂C(c, β)
∂β

= − ∂

∂β
Et=1

(x(ε+ δ) β

α + β
− kε

)2
− ∂C(c, β)

∂β

= ∂

∂β

(
x(2k − x)β
α(α + β) −

k2

α

)
− ∂C(c, β)

∂β

= x(2k − x)
(α + β)2 −

∂C(c, β)
∂β

; (18)

∂V (x, β)
∂x

− ∂C(c, β)
∂x

= − ∂

∂x
Et=1

(x(ε+ δ) β

α + β
− kε

)2


= ∂

∂x

(
x(2k − x)β
α(α + β) −

k2

α

)

= 2β(k − x)
α(α + β) . (19)

The critical points satisfying (18) and (19) simultaneously are

(x, β) ∈ {(k, β̃), (0, 0), (2k, 0)},

where β̃ satisfies k2

(α+β)2 − ∂C(c,β)
∂β

∣∣∣
β=β̃

= 0. To verify SOC, I examine the Hessian:

H =

 −
2β

α(α+β)
2(k−x)
(α+β)2

2(k−x)
(α+β)2 −2(2k−x)x

(α+β)3 − ∂2C(c,β)
∂β2

 .
At (x̃, 0), where x̃ ∈ {0, 2k}, the Hessian is

H =

 0 2(k−x̃)
α2

2(k−x̃)
α2 −2(2k−x̃)x̃

(α+β)3

 ,
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so |H1| = 0 and |H2| < 0. However, at (k, β̃), the Hessian is

H =

 −
2β̃

α(α+β̃) 0

0 − 2k2

(α+β̃)3 − ∂2C(c,β̃)
∂β2

 ,
so |H1| < 0 and |H2| > 0. Therefore (xcUD, βcUD) = (k, β̃). Next note that β̃ = βc(x = k).

Hence, if the manager can choose the fraction of informed users, she will set xcUD = k and

βcUD ≡ βc(x = k).

Proof of Proposition 4: The result for the manager follows by revealed preference. To

evaluate the users’ preferences, note that a user who observes a signal incurs in expectation

the posterior variance and his payoff is increasing in the signal precision β:

∂

∂β
Et=1[u(â(s, β), ω)|s, β] = − ∂

∂β
Et=1

(µ0 + β(ε+ δ)
α + β

− ω
)2


= − ∂

∂β
Et=1

( βδ

α + β
− αε

α + β

)2


= − ∂

∂β

(
β2

(α + β)2Et=1[δ2]− α2

(α + β)2Et=1[ε2]
)

= − ∂

∂β

(
1

α + β

)

= 1
(α + β)2 > 0. (20)

It immediately follows that

Et=1[u(â(s, β), ω)|s, β] ≥ Et=1[u(â(µ0), ω)],∀β ≥ 0. (21)

Case k ≤ 1
2 : By Lemma 2 and Proposition 3, the manager implements an information

system only under UD. The uninformed users are indifferent, because they do not observe a

signal under either of the regimes. By (21), the informed users are better off under UD.

Case k > 1
2 : By Lemma 2 and Proposition 3, the manager implements an information

system under both regimes. By (21), the uninformed users are strictly better off under MD

(because they observe a signal, while under UD they do not). By Lemma 2 and (20), the

informed users strictly prefer UD.

Proof of Corollary 1: Note that the information gain is increasing in the precision, because
∂

∂β
(Et=1[u(â(s, β), ω)|s, β]− Et=1[u(â(µ0), ω)]) = ∂

∂β
Et=1[u(â(s, β), ω)|s, β] > 0
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by (20). Then, by Lemma 2, φc(x) ≡ Et=1[u(â(s, β), ω)|s, β]−Et=1[u(â(µ0), ω)] is decreasing

in ∆x ≡ |x− k|.

Proof of Proposition 5: Consider the differential of the welfare terms under the two

regimes:

∆W ≡ W c
UD −W c

MD = kφcUD − φcMD.

The sign of ∆W is nontrivial (because k < 1 by assumption but φcUD > φcMD by Corollary

1). Note that limc→0 β
c
MD = limc→0 β

c
UD →∞. Note that for j = UD,MD,

φcj = Et=1[u(â(s, βcj ), ω)|s, βcj ]− Et=1[u(â(µ0), ω)]

= − 1
α + βcj

+ 1
α

=
βcj

α(α + βcj )
.

It follows that limc→0 φ
c
MD = limc→0 φ

c
UD = 1

α
and hence

lim
c→0

∆W ∝ k − 1 < 0.

Further, limc→∞ β
c
MD = limc→∞ β

c
UD = 0, so limc→∞ φ

c
MD = limc→∞ φ

c
UD = 0 and hence

lim
c→∞

∆W = 0.

However, φcMD reaches zero weakly faster than kφcUD if k ≤ 1
2(
√

5− 1). To see why consider:

Φ ≡ kφcUD
φcMD

=
kβcUD

α(α+βcUD)
βcMD

α(α+βcMD)

.

Note that, if C(c, β) = cβ2

2 , then βcUD and βcMD satisfy

βcUD = k2

c(α + βcUD)2 ,

βcMD = 2k − 1
c(α + βcMD)2 .

and hence

Φ =
k3

αc(α+βcUD)3

2k−1
αc(α+βcMD)3

= k3(α + βcMD)3

(2k − 1)(α + βcUD)3 .
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Now note that

lim
c→∞

Φ = k3

2k − 1 ≥ 1,

if k ≤ 1
2(
√

5 − 1). In other words, φcMD reaches zero weakly faster than kφcUD if k ≤ k̃ ≡
1
2(
√

5− 1) ∈ (1
2 , 1). It follows that for c sufficiently high and k ≤ k̃, ∆W ≥ 0.

Proof of Corollary 2: Let

Πc(x) ≡ λ[V (x, βc(x))− C(c, βc(x))] +W c(x)

denote the objective function of the planner with costly implementation, where

βc(x) = arg max
β

V (x, β)− C(c, β).

The optimal x̂cRD satisfies dΠc(x)
dx

∣∣∣
x=x̂cRD

= 0. Differentiating with respect to x,

dΠc(x)
dx

= λ

(
∂V (x, β)
∂β

− ∂C(c, β)
∂β

)∣∣∣∣∣
β=βc(x)︸ ︷︷ ︸

=0 by FOC

dβc(x)
dx

+λ∂V (x, βc(.))
∂x

+ φc(x) + x
dφc(x)
dx

= 1
α + βc(x)

[
βc(x)(1 + 2λ(k − x))

α
+ x

(α + βc(x))
∂βc(x)
∂x

]
.

Let g(x) ≡ βc(x)(1+2λ(k−x))
α

+ x
(α+βc(x))

∂βc(x)
∂x

. Given that 1
α+βc(x) > 0, x̂cRD satisfies g(x)|x=x̂cRD

=

0. Next observe that, if C(c, β) = cβ2

2 , then βc(x) satisfies

(2k − x)x
(α + βc(x))2 − cβ

c(x) = 0 (22)

and applying the Implicit Function Theorem,

dβc(x)
dx

=
2(k−x)

(α+βc(x))2

2x(2k−x)
(α+βc(x))3 + c

= (k − x)(α + βc(x))
(2k − x)x .

Substituting,

g(x) = βc(x)(1 + 2λ(k − x))
α

+ k − x
2k − x.

Note that x̂cRD ≥ k because

g(x = k) = βc(x = k)
α

≥ 0.
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Observe that x̂cRD < 2k (to satisfy the implementation constraint), because by Lemma 2, if

x ≥ 2k, then βc(x) = 0. If k ≤ 1
2 , then it follows directly that x̂cRD < 1 (because 2k < 1).

However, if k > 1
2 , then x̂cRD < 1 only if c sufficiently high. To see why first consider c = 0.

lim
c→0

g(x = 1) = limc→0 β
c(x = 1)(1 + 2λ(k − 1))

α
+ k − 1

2k − 1 > 0

because when k > 1
2 then 1 + 2λ(k − 1) > 1 + 2λ(1

2 − 1) = 1 − λ ≥ 0 (because λ ≤ 1 by

assumption) and limc→0 β
c(x = 1) → ∞. In other words, if c = 0 and k > 1

2 , the planner

sets xcRD = 1. However,

g(x = 1) = βc(x = 1)(1 + 2λ(k − 1))
α

+ k − 1
2k − 1

∝ βc(x = 1)(2k − 1)(1 + 2λ(k − 1)) + (k − 1)α < 0,

if βc(x = 1) is sufficiently low, which by Lemma 2 occurs when c is sufficiently high (recall

that limc→∞ β
c(x = 1) = 0). It follows that xcRD < 1 if c is sufficiently high for any k.

To show the comparative statics of xcRD with respect to c, I apply the Implicit Function

Theorem:

∂xcRD
∂c

= −
(1+2λ(k−xcRD))

α

∂βc(x=xcRD)
∂c

−αk+(xcRD−2k)2(−2λβc(x=xcRD)+(1+2λ(k−xcRD))
∂βc(x=xc

RD
)

∂x
)

α(xcRD−2k)2

∝ 1 + 2λ(k − xcRD)
−αk + (xcRD − 2k)2(−2λβc(x = xcRD) + (1 + 2λ(k − xcRD))∂β

c(x=xcRD)
∂x

)
< 0

because

(i) α ≥ 0 by assumption and (xcRD − 2k)2 > 0;

(ii) ∂βc(x=xcRD)
∂c

< 0 by Lemma 2;

(ii) ∂βc(x=xcRD)
∂x

= (k−xcRD)(α+βc(x=xcRD))
(2k−xcRD)xcRD

∝ (k−xcRD)
(2k−xcRD) < 0, because xcRD ∈ (k, 2k);

(iii) 1 + 2λ(k − xcRD) > 0 if λ ∈ [0, 1]. To see this, recall from the preceding discussion

in the proof that xcRD < Min{2k, 1}. Therefore, if k ≤ 1
2 , then Min{2k, 1} = 2k

and 1 + 2λ(k − xcRD) > 1 + 2λ(k − 2k) = 1 − 2λk > 1 − 2k > 0 (because λ ≤ 1 by

assumption). If k > 1
2 , then Min{2k, 1} = 1 and 1 + 2λ(k − xcRD) > 1 + 2λ(k − 1) >

1 + 2λ(1
2 − 1) = 1− λ ≥ 0 (because λ ≤ 1 by assumption).
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Proof of Lemma 3: Part (i): At date 3, the informed users take actions that equal their

posterior expectation µ(s|β). The maintained assumption is that the users (i) are not ordered

on [0, 1] and (ii) realize they are included “in the know” only after receiving the signal. Hence

if a user ends up being uninformed, he only infers that the signal was such that the manager

did not choose x = 1. Hence, at date 3, the uninformed users take actions that equal their

posterior belief µ̂ ≡ E[ω|x̂ 6= 1], where x̂ is the uninformed users’ conjecture of the manager’s

dissemination strategy. In equilibrium, this conjecture coincides with the manager’s choice

of dissemination strategy at date 2:

xt=2(s|β) = arg max
x∈[0,1]

Et=2[v(Â(x, s, β), ω)|s, β]

and the posterior beliefs of the uninformed users (upon realizing they are not included “in

the know”) satisfy

µ̂ = E[ω|xt=2(s|β) 6= 1].

Suppose µ̂ < ω̄ (I show below that this indeed is the case). To avoid clutter let µs ≡ µ(s|β).

Simplifying,

Et=2[v(Â(x, s, β), ω)|s, β] = − (Et=2[xµs + (1− x)µ̂− kω − (1− k)ω̄)|s, β])2

−V ar(xµs + (1− x)µ̂− kω − (1− k)ω̄)|s, β)

= − ((x− k)µs + (1− x)µ̂− (1− k)ω̄)2 − k2V ar(ω|s, β), (23)

because V ar(µs|s, β) = 0. The manager’s ’s optimization problem at date 2 is:

max
x

V̂ (x|s, β) ≡ − ((x− k)µs + (1− x)µ̂− (1− k)ω̄)2 − k2V ar(ω|s, β)

s.t. 0 ≤ x ≤ 1.

The Lagrangian is:

LR = − ((x− k)µs + (1− x)µ̂− (1− k)ω̄)2 − k2V ar(ω|s, β) + λR1 x+ λR2 (1− x).

The Karush-Kuhn-Tucker stationarity condition is:

∂LR

∂x
= −2(µ̂− µs)(k(µs − ω̄) + ω̄ − µ̂(1− x)− xµs) + λR1 − λR2 = 0.
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The Karush-Kuhn-Tucker feasibility conditions are:

x ≥ 0 and 1− x ≥ 0.

The Karush-Kuhn-Tucker complementarity slackness conditions are:

λR1 x = 0 and λR2 (1− x) = 0.

The case λR1 = 0 and λR2 = 0 can be immediately ruled out because it implies x = 0 and

x = 1, which cannot hold simultaneously. There are three remaining cases to be considered:

Case 1: λR1 = 0, x > 0, λR2 > 0, 1− x = 0

This case implies x = 1 and λR2 = 2(1− k)(µs − µ̂)(ω̄ − µs). This is feasible (i.e., λR2 > 0) if

µs ∈ (µ̂, ω̄).

Case 2: λR1 > 0, x = 0, λR2 = 0, 1− x > 0

This case implies x = 0 and λR1 = 2(µ̂−µs)(k(µs− ω̄)+ ω̄− µ̂). This is feasible (i.e., λR1 > 0)

if µs ∈ (m, µ̂), where m ≡ µ̂−(1−k)ω̄
k

< µ̂ < ω̄.

Case 3: λR1 = 0, x > 0, λR2 = 0, 1− x > 0

This case implies x = k + (1− k) (µ̂−ω̄)
(µ̂−µs) , and it is feasible (i.e., 0 ≤ x ≤ 1) if µs /∈ (m, ω̄).

Summarizing, the solution to the optimization program is:

xt=2(s|β) =



k + (1− k) (µ̂−ω̄)
(µ̂−µs) ∈ (0, k) if the signal is such that µs < m,

0 if the signal is such that µs ∈ [m, µ̂) ,

1 if the signal is such that µs ∈ (µ̂, ω̄] ,

k + (1− k) (µ̂−ω̄)
(µ̂−µs) ∈ (k, 1) if the signal is such that µs > ω̄.

If the signal is such that µs = µ̂ any x is a solution.

As a next step, note that µs is a normally distributed random variable. Let f(µs) denote

the p.d.f. of µs. In equilibrium, the beliefs of the uninformed users satisfy:

µ̂ = E[ω|xt=2(s|β) 6= 1] =
∫ µ̂
−∞ µsf(µs)dµs +

∫∞
ω̄ µsf(µs)dµs∫ µ̂

−∞ f(µs)dµs +
∫∞
ω̄ f(µs)dµs

.

Rearranging the above expression yields:
∫ µ̂

−∞
(µ̂− µs)f(µs)dµs =

∫ ∞
ω̄

(µs − µ̂)f(µs)dµs. (24)
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Observe that the LHS is increasing in µ̂, while the RHS is decreasing in µ̂. Next, note

that, as µ̂→ −∞, the LHS becomes zero and hence lower than the RHS, which is positive.

Furthermore, as µ̂→ µ0, the LHS exceeds the RHS as µ0 < ω̄. Lastly, note that (24) never

holds for µ̂ < ω̄. Summarizing, there exists a unique µ̂ ∈ (−∞, µ0) that satisfies (24).

Part (ii): The proof follows a similar logic to the one in the proof of part (i). Suppose

µ̂ > ω̄. (I show below that this indeed is the case.) Following similar steps, the solution to

the optimization program is:

xt=2(s|β) =



k + (1− k) (µ̂−ω̄)
(µ̂−µs) ∈ (k, 1) if the signal is such that µs < ω̄,

1 if the signal is such that µs ∈ [ω̄, µ̂) ,

0 if the signal is such that µs ∈ (µ̂,m] ,

k + (1− k) (µ̂−ω̄)
(µ̂−µs) ∈ (0, k) if the signal is such that µs > m,

where m ≡ µ̂−(1−k)ω̄
k

> µ̂. If the signal is such that µs = µ̂ any x is a solution (in a continuos

distribution the probability of this event is zero). Lastly, in equilibrium, the beliefs of the

uninformed users satisfy:

µ̂ = E[ω|xt=2(s|β) 6= 1] =
∫ ω̄
−∞ µsf(µs)dµs +

∫∞
µ̂ µsf(µs)dµs∫ ω̄

−∞ f(µs)dµs +
∫∞
µ̂ f(µs)dµs

.

Rearranging the above expression yields:
∫ ω̄

−∞
(µ̂− µs)f(µs)dµs =

∫ ∞
µ̂

(µs − µ̂)f(µs)dµs. (25)

Observe that the LHS is increasing in µ̂, while the RHS is decreasing in µ̂. Next, note that,

as µ̂ → ∞, the LHS is positive and hence higher than the RHS, which is becomes zero.

Furthermore, as µ̂ → µ0, the LHS is lower than the RHS as µ0 > ω̄. Lastly, note that

(24) never holds for µ̂ > ω̄. Summarizing, there exists a unique µ̂ ∈ (µ0,∞) that satisfies

(24).

Proof of Proposition 6: Consider µ0 < ω̄. Again, to avoid clutter, let µs ≡ µ(s|β) and

m ≡ µ̂−(1−k)ω̄
k

. Substituting for xt=2(s|β) (as derived in the proof of Lemma 3), and noting

that V ar(ω|s, β) = −(E[ω|s, β])2 + E[ω2|s, β] = −µ2
s + E[ω2|s, β], the manager’s expected
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payoff at date 2 at the revised fraction, v̂(µs) ≡ Et=2[v(Â(xt=2(s|β), s, β), ω|s, β], is:

v̂(µs) =



k2µ2
s − k2E[ω2|s, β] if µs < m,

−k2(µ̂− kµs − (1− k)ω̄)2 + k2µ2
s − k2E[ω2|s, β] if µs ∈ [m, µ̂) ,

−(1− k)2(µs − ω̄)2 + k2µ2
s − k2E[ω2|s, β] if µs ∈ (µ̂, ω̄] ,

k2µ2
s − k2E[ω2|s, β] if µs > ω̄.

Let Y (µs) be the concave closure of v̂(µs), i.e., the smallest concave function that is every-

where weakly greater than v̂(µs). By the analysis in Kamenica and Gentzkow (2011), the

manager will implement a perfectly informative system (β →∞), at date 1, if Y (µs) > v̂(µs).

Now note that (i) v̂(µs) ≤ k2µ2
s − k2E[ω2|s, β] and (ii) the expectation of E[ω2|s, β] is con-

stant across all Bayes plausible distributions of posteriors so that k2µ2
s− k2E[ω2|s, β] can be

treated as a constant plus the term k2µ2
s, which is strictly convex in the posterior beliefs. It

follows that Y (µs) > k2µ2
s − k2E[ω2|s, β] ≥ v̂(µs). The proof for the case µ0 > ω̄ follows

similar logic and is therefore omitted.

Formal proof of argument in footnote 42:

Claim: Suppose that the manager can delay (or revise) the choice of x to date 2 (after

observing s) and that x is publicly observable. Then, there does not exist a fully revealing

equilibrium.

Proof: The proof is by contradiction. Suppose that there exists a fully revealing equilibrium

in which, after observing a signal realization s, the manager chooses a fraction of informed

users xt=2(s|β) that is invertible in s everywhere; the informed users take actions that equal

µ(s|β); and the uninformed users take actions that equal E[ω|x = xt=2(s|β)] = E[ω|s, β] =

µ(s|β). For the purpose of developing a contradiction suppose that the manager observes a

signal realization of s = so such that hers and the informed users’ posterior expectation is

µ(s = so|β) < ω̂ (similar arguments hold for the case of µ(s = so|β) > ω̂). If the manager

chooses xo ≡ xt=2(s = so|β), the uninformed users infer the signal, i.e., E[ω|x = xo] =

E[ω|s = so, β] = µ(s = so|β). The actual aggregate action collapses to

Â(x = xo, s = so, β) = xoµ(s = so|β) + (1− xo)E[ω|x = xo] = µ(s = so|β),
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whereas the aggregate action that the manager prefers is

A∗(s = so|β) ≡ Et=2[A∗(ω)|s = so, β] = kµ(s = so|β) + (1− k)ω̂ > µ(s = so|β).

Recall that the manager wants to eliminate the gap between the actual aggregate action

and her most preferred action.47 Next, note that there exists soo, such that (i) µ(s = soo|β) ∈

(µ(s = so|β), A∗(s = so|β)], (ii) xoo ≡ xt=2(s = soo|β) 6= xo and (iii) E[ω|x = xoo] = E[ω|s =

soo, β] = µ(s = soo|β). Given the uninformed users strategy to take actions that equal

E[ω|x = xt=2(s|β)] = E[ω|s, β] = µ(s|β) for any s, if the manager observes so, she prefers

choosing xoo and pooling with soo because doing so results in an aggregate action that is

closer to her most preferred action:

A∗(s = so|β) ≥ µ(s = soo|β)

≥ xooµ(s = so|β) + (1− xoo)µ(s = soo|β)

= Â(x = xoo, s = so, β)

≥ µ(s = so|β)

= Â(x = xo, s = so, β).

This contradicts the existence of a fully revealing equilibrium.

Proof of Lemma 4: The users’ actions are equal to the expected state given their infor-

mation at the date they act because: (i) there is a continuum of users over unity and so

the action of a single user does not affect the aggregate action A, and (ii) the delay cost is

independent of the user’s action. The actions of the uninformed users depend on whether

they observed the actions of the informed users (and by doing so learned the signal s) or

did not observe the actions of the informed users. In the former case, their actions equal

the posterior µ(s|β) and in the latter case equal the prior µ0. The informed users’ actions

always equal the posterior µ(s|β). Consider a representative uninformed user i who conjec-

tures that a fraction d ∈ [0, 1] of uninformed users acts late. Simplifying, the ex post payoff
47To see why, note that the manager’s expected payoff conditional on the signal realization s at date 2 can

be presented as Et=2[v(Â(x, s, β), ω)|s, β] = −
(
Et=2[Â(x, s, β)− kω − (1− k)ω̄)|s, β]

)2
− V ar(Â(x, s, β) −

kω − (1− k)ω̄)|s, β) = −(Â(x, s, β)−Et=2[A∗(ω)|s, β])2 − k2V ar(ω|s, β), where the last term is constant in
x.
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of a representative uninformed user i is

ui(·) = −(µ0 − ω)2 + π(xµ(s|β) + (1− x)dµ(s|β) + (1− x)(1− d)µ0 − ω)2

if he acts early and

ui(·) = −(µ(s|β)− ω)2 + π(xµ(s|β) + (1− x)dµ(s|β) + (1− x)(1− d)µ0 − ω)2 −D

if he acts late. Then, for given β, at date 3.1, the representative uninformed user i compares

his expected payoffs and acts early iff:

∆ui(β) ≡ Et=3.1[(µ(s|β)− ω)2 − (µ0 − ω)2] +D

= − β

α(α + β) +D

> 0,

which happens when D ≥ β
α(α+β) . Given that all uninformed users are identical, then

for given β, a symmetric equilibrium arises in which all uninformed users act early if D ≥
β

α(α+β) ≡ D(β). Otherwise they act late. The comparative statics of D(β) is straightforward.

Proof of Proposition 7: Using the proof of Lemma 4, the manager compares the value of

the following three optimization programs:

Program P(1):

max
β≥0,x∈[0,1]

V (x, β)

s.t. D ≥ β

α(α + β)

Program P(2):

max
β≥0

V (x = 1, β)

If D ≥ 1
α

the constraint in program P(1) is always satisfied for any β. Hence, by the proof of

Proposition 1, under P(1), the manager chooses (k,∞), which is identical to the solution of

the baseline case under UD. The solution of P(2) is is identical to the solution of the baseline
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case under MD. By Proposition 2, the manager prefers UD over MD. Hence if D ≥ 1
α

, the

manager chooses (k,∞) and the uninformed users act early (as well as the informed users

by assumption).

If D < 1
α

the constraint of program P(1) is not satisfied for the solution of the uncon-

strained program (k,∞). To satisfy the constraint the manager can set a precision level

β(D) that just satisfies the constraint, i.e., β(D) = α2D
1−αD . Note that dβ(D)

dD
> 0. Recall that

V (x, β) = −(1− k)2(µ0 − ω̄)2 − k2

α
+ x(2k − x) β

α(α+β) . Substituting for β = β(D),

V (x, β = β(D)) = −(1− k)2(µ0 − ω̄)2 − k2

α
+ x(2k − x) α2D

α(1− αD)(α + α2D
1−αD )

.

Then taking derivative with respect to x, I get ∂V (x,β=β(D))
∂x

∝ k − x and so the manager

sets x = k and the value of program P(1) is −(1 − k)2(µ0 − ω̄)2 − k2

α
+ k2 α2D

α(1−αD)(α+ α2D
1−αD )

.

The solution of P(2) is identical to the solution of the baseline case under MD. The value of

P(2) is −(1− k)2(µ0 − ω̄)2 − k2

α
+ max{2k−1

α
, 0}. It is straightforward to see that the value

of program P(1) exceeds that of program P(2) if D ≥ max{0, 2k−1
αk2 }; and vice versa.

Proof of Corollary 3: By Proposition 7, for any D < max{0, 2k−1
αk2 } (which is feasible only

if k > 1
2), all users learn the signal and the manager chooses β → ∞ under both regimes.

Hence WA
UD−WA

MD = 0. I next consider the case D ≥ max{0, 2k−1
αk2 }. Under UD, the manager

disseminates the signal to a fraction k of users and chooses βA = β(D) if D ∈
[

2k−1
αk2 ,

1
α

]
or

βA →∞ if D > 1
α

. The users’ welfare under UD is then:

WA
UD = kEt=1

[
−(µ(s|βA)− ω)2 + π(kµ(s|βA) + (1− k)µ0 − ω)2

]
+(1− k)Et=1

[
−(µ0 − ω)2 + π(kµ(s|βA) + (1− k)µ0 − ω)2

]
= − k

α + βA
− (1− k)

α
+ πV ar(kµ(s|βA)− ω)

= − k

α + βA
− (1− k)

α
+ π

(
1
α
− (2− k)k βA

α(α + βA)

)

= −α(1− π) + βA(1− k)(1− π(1− k))
α(α + βA)

< 0.

Under MD the manager publicly disseminates the signal and chooses β → ∞ (β = 0) if
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k > 1
2 (k ≤ 1

2). Hence the users’ welfare under MD is

WA
MD =


Et=1 [−(ω − ω)2 + π(ω − ω)2] = 0 if k > 1

2 ,

Et=1 [−(µ0 − ω)2 + π(µ0 − ω)2] = − (1−π)
α

if k ≤ 1
2 .

If k > 1
2 , then WA

UD < WA
MD. Now consider the case k ≤ 1

2 . Then, WA
UD−WA

MD ∝ 1−π(2−k).

Hence WA
UD > WA

MD if π < 1
2−k ≡ π and WA

UD ≤ WA
MD if π ≥ π.

Proof of Proposition 8: Let oi(s, β, ξi) denote the action of informed user i as observed

by his peers. Upon observing Z, the uninformed users update their beliefs about ω and, at

date 3.2, take actions

aN(µ0, Z) = Et=3.2[ω|Z] = αµ0 + θ
∑z
i=1 oi(s, β, ξi)

α + zθ

where the superscript “N” denotes noisy action and θ ≡ (α+β)γ
α+β+γ is the precision with which the

observed actions of the informed users reflect the state ω. To see why, note that oi(s, β, ξi) =

ω+ βδ−αε
α+β + ξi and so V ar(βδ−αε

α+β + ξi) = 1
α+β + 1

γ
= α+β+γ

(α+β)γ . In line with the previous analysis,

A is the average action:

AN(x, s, β) = z

N
µ(s|β) +

(
1− z

N

)
aN(µ0, Z)

= xµ(s|β) + (1− x)µ0︸ ︷︷ ︸
baseline average action

+ (1− x) xNθ

(α + xNθ)

(
β

(α + β)(ε+ δ) + ηz

)
︸ ︷︷ ︸

≡n(x,β) (additional term due to spillover)

,

where ηz ≡
∑z

i=1 ξi
z
∼ N

(
0, 1

zγ

)
. Now, in addition to the average action that the users take

in the baseline setting, there is an additional term n(x, β) that arises due to spillover. At

date 1 the manager maximizes her expected utility:

V N(x, β) = −Et=1[(AN(x, s, β)− kω − (1− k)ω)2]

= x
β

α(α + β)

(
1 + (1− x)Nθ

α + xNθ

)(
2k − x

(
1 + (1− x)Nθ

α + xNθ

))
− (1− x)2xNθ2

γ(α + xNθ)2︸ ︷︷ ︸
≡A1(x,β)

−k
2

α
− (1− k)2(µ0 − ω)2︸ ︷︷ ︸

≡A2 (independent of x and β)

.

Given that A2 is a constant, the manager’s choice of x and β satisfies

(xN , βN) = arg max
β≥0,x∈[0,1]

A1(x, β).
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First, note that

∂A1(x, β)
∂β

= xT

γ(α + β)2(α + θNx)3 ∝ T,

where

T ≡ γ(α +Nθ)(α +Nxθ)︸ ︷︷ ︸
≥0

(α(2k − x) + (2k − 1)Nxθ)

+ 2 ∂θ
∂β

(α + β)N(1− x)βNxθ︸ ︷︷ ︸
≥0

(θ(1− x)− γ(1− k))

+ 2 ∂θ
∂β

(α + β)N(1− x)α︸ ︷︷ ︸
≥0

(Nθ2(1− x)x+ βγ(k − x)).

Sufficient conditions for T > 0 are

α(2k − x) + (2k − 1)Nxθ > 0

θ(1− x)− γ(1− k) > 0

Nθ2(1− x)x+ βγ(k − x) > 0,

which are all satisfied if x ≤ x ≡ min
{

2αk
α+(1−2k)Nθ , 1−

γ(1−k)
θ

, k
}

. This is feasible if x > 0.

Recall that θ = (α+β)γ
α+β+γ and note that:

1) 2αk
α+(1−2k)Nθ is decreasing in γ and limγ→0

2αk
α+(1−2k)Nθ = 2k > 0;

2) 1− γ(1−k)
θ

> 0 is decreasing in γ and limγ→0 1− γ(1−k)
θ

= k > 0;

3) k > 0 by assumption.

Hence there exist γo > 0 and γoo > 0 such that x ≤ x is feasible if γ < min{γo, γoo}.

Substituting for β →∞, the optimal fraction satisfies

L(x, γ) ≡ lim
β→∞

∂A1(x, β)
∂x

= 2α(k − x)− γN(1− 2k + x2)
(α + γNx)2 = 0, (26)

which yields x(γ) =
√

(α+γN)(α−γ(1−2k)N)−α
γN

. I note that x(γ) < k because L(x = k, γ) =

−γN(1−k)2)
(α+γNk)2 < 0 (as γ > 0, N > 0 and k < 1) and x(γ) > 0 because L(x = 0, γ) =

2αk−γ(1−2k)N)
α2 > 0 if γ < γo (as 2αk−γ(1−2k)N)

α2 is decreasing in γ and limγ→0
2αk−γ(1−2k)N

α2 =
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2k
α
> 0). Next, I note that x(γ) is a decreasing function, because, using the Implicit Function

Theorem,

dx(γ)
dγ

∝ ∂L(x, γ)
∂γ

= N(γNxN(1− 2k + (xN)2) + α(−1 + k(2− 4xN) + 3(xN)2))
(α + γNxN)3

= −
2α(α + γkN −

√
(α + γN)(α− γ(1− 2k)N))

γ2N(α + γN)(α− γ(1− 2k)N) by (26)

< 0 if γ < γo.

As a last step I verify that x(γ) < x. This is because (i) limβ→∞ x = 2αk
α+γN(1−2k) and (ii)

L(x = 2αk
α+γN(1−2k) , γ) = −2α2k−αγ(1−2k)2N−γ2(1−2k)3N2

α2(α+γN) < 0 if γ < γoo.

Let γ ≡ min{γo, γoo, γo, γoo}. It follows that, if γ < γ, the optimal solution is βN → ∞

and x(γ) ∈ (0, k) where x(γ) is decreasing in γ.
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