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We study free-ride policies as a mechanism to incentivize users of a “dockless” or “free-floating” electric

vehicle sharing system (EVSS) to park vehicles at charging stations in order to maintain a charged fleet. A

balanced system has a fleet that is adequately charged and evenly dispersed throughout the city. If left to

unfold naturally, the system would fall out of balance, and revenue and customer experience might suffer.

Most sharing systems use manual repositioning to achieve this balance, but we consider pricing incentives

as an alternative method. We develop an infinite horizon dynamic program to analyze free-ride policies. We

focus on an EVSS that offers free rides to customers if they return vehicles to charging stations. We build

on this initial formulation to construct a mixed-integer program that outputs intuitive, battery-threshold

rules for when to offer free rides. We also extend the model to accommodate more general discount-based

policies. In a discrete-event simulation model using real data from an EVSS, we compare the performance

of this simple policy against other sophisticated policies, including the commonly used fine-based policy. We

first find that the simple threshold-based policy performs close to a more sophisticated, black-box policy

in terms of revenue. We also discover that the free-ride policies generate customer utilities that are ten

times higher than fine-based policies, but also generate less revenue. However, free-ride policies can be less

costly to implement since they rely on manual repositioning up to 65-75% less than the benchmarking

policies. Our simulation reveals this three-dimensional trade-off between customer satisfaction, revenue, and

operational complexity. Furthermore, we find that the cost of repositioning and the customer heterogeneity

in the likelihood to accept a discount are major drivers of the frequency of free-ride offers. Our results are

robust under many demand patterns and under a variety of network settings.
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1. Introduction

In “dockless” or “free-floating,” electric vehicle sharing systems (EVSSs), a fleet of electric

rechargeable vehicles (i.e. cars, vespas, bicycles, or scooters) are scattered throughout a

city. Users of the system can rent or check-out these vehicles for a small fee that is generally

proportional to trip time or distance. When the user is finished with the vehicle, she can

park it in any legal parking spot throughout the city. Included among these parking zones

are charging stations, where the vehicle can be plugged in to regain charge. Users who end

their trips at charging stations help the system, since as a vehicle charges, it gains the
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potential to serve a broader class of trips. One potential mechanism to incentivize users to

end their rides at charging stations is to offer them a discount on their ride if they do so. In

such a scenario, the system operator forgoes immediate revenue to ensure that the vehicle

at hand is sufficiently charged for future rides. There is no guarantee, however, that the

user will agree to take this discounted ride, since the proposed charging station could be

far away from the user’s desired end location. In this way, when the user decides whether

or not to accept the offered discount, she trades off the price reduction with the potential

inconvenience of concluding her ride far away from her desired end location.

In this paper, we study the trade-offs described above by considering how a system

operator of a dockless EVSS can optimally offer discounted rides to incentivize users to

end their trips at a charging station. The models that we develop are able to incorporate

a variety of discount structures, but we focus our analysis mainly on free-ride policies in

which users are strategically given the option to take a free trip to a charging station in lieu

of a full-priced ride to their desired destination. This simplified discount structure allows

us to develop implementable policies, which we show via extensive simulations perform

quite well on a wide variety of performance metrics related to revenue, operational costs

and customer satisfaction.

This work builds on an extensive body of research on vehicle sharing systems (VSSs). The

increase in VSS-related literature can be attributed to the rapid expansion of such systems

and the intriguing operational challenges that accompany this growth. In what follows, we

briefly describe the rise of VSSs before detailing the classical operational problems that

accompany such systems and that motivate our work on discount rides in EVSSs.

The make-up and growth of VSSs. The first VSSs were comprised entirely of gasoline-

powered vehicles, which are still present in many VSSs, i.e. car2go and Zipcar. Soon

after, bike sharing systems (BSSs), i.e. CitiBike, were introduced to handle shorter trips,

and most recently, cities have witnessed the adoption of EVSSs, i.e. Bird Scooters, which

have documented environmental and financial benefits over gasoline-powered vehicles (U.S.

Department of Energy 2016). The gain in popularity of all three VSSs is without question,

as membership is slated to exceed 12 million by 2020 and revenue is projected to reach $6.5

billion in 2024 (Navigant Research 2016b,a). As these systems continue to grow, so too

does the necessity to develop efficient solutions to the many daily operational challenges.
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Operational problems in VSSs. The primary operational problem in VSSs revolves around

balancing supply with demand. In a perfect system, there would always be an available

vehicle in close proximity to every inquiring user. In practice, achieving this service level is

nearly impossible due to the stochasticity in demand and the limited number of vehicles. In

fact, if left to run entirely on its own, most VSSs would inevitably experience an extremely

lopsided dispersion of vehicles because supply and demand rarely match up perfectly. To

combat this issue, VSSs have resorted to two main operational levers: rebalancing and

pricing. The former refers to manually moving vehicles between stations in anticipation of

future demand, which is effective but costly (Fishman et al. 2014).

Later generation VSSs became more sophisticated and started to offer dockless parking,

which allows riders to park on any street in a pre-defined service region. While dockless

systems provide users with more convenience and flexibility in terms of where users are

permitted to finish rides, they also bring new flavors of operational problems. For one,

merely keeping track of each vehicle’s location is a more complex task in free-float systems

since the pre-defined parking regions generally span the entire city. This is in stark contrast

to traditional docked systems, in which the system’s state can simply be described by the

number of vehicle at each of the docking stations. This inherent difference significantly

complicates the aforementioned rebalancing problem; manual rebalancing in dockless sys-

tems is a more tedious task since vehicles are not confined to docking stations. With this

in mind, many of the dockless VSSs have flipped the rebalancing problem on its head;

instead of manually rebalancing the system themselves, they attempt to incentivize users

to accomplish this task for them. For example, LimeBike offers ride credits to users who

check-out bikes that have sat idle for an extended period of time.

For the dockless EVSS that we consider, the system’s state is characterized by the current

location and charge level of each vehicle. In this setting, a balanced system not only has

vehicles in close proximity to inquiring users, but it also ensures that these vehicles are

adequately charged. In what follows, we describe how EVSS’s have attempted to achieve

this latter, more elementary notion of a balanced network.

Maintaining a charged fleet in EVSSs. For dockless EVSSs, there is perhaps an even more

fundamental issue than that of balancing supply and demand. Paramount to operational

efficiency and the profitability of such systems is the ability to keep the electric vehicle fleet

adequately charged so that users do not forgo a ride because they cannot find a vehicle with
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enough charge. In some existing dockless EVSSs, the current practice is to aggressively fine

riders who street-park vehicles with low battery. This approach, however, does not appear

to be ideal since it often results in users choosing between the lesser of two evils when they

unexpectedly finish a ride with a low-battery vehicle. In such scenarios, users are forced to

either navigate out of their way to drop a low-battery vehicle at an open charging station or

to park near their desired destination and pay a hefty fine, both of which negatively impact

the user experience. Moreover, it is not obvious how exactly to choose this aforementioned

“low-battery” threshold, which will have a dramatic effect on the day-to-day dynamics of

the system. Choosing this threshold to be too low may result in many vehicles stranded on

the street because they do not have enough battery to fulfill any rides. On the other hand,

a threshold that is too high may lead to an overwhelming number of fines and hence an

unhappy and frustrated customer base. In contrast, the pricing discount incentives that we

consider have the potential both to keep the fleet charged while only improving the user

experience, since any offered discounted ride can be turned down.

We consider a dockless EVSS consisting of n vehicles and m charging stations. The

vehicles in our setting should be thought of as cars or Vespas, and so manually moving

these vehicles is quite tedious and costly in relation to moving bikes. At any given time,

the state of each vehicle can be described by its location and its current charge level. As

time progresses, users rent vehicles and ride them to their desired location. Our goal is to

develop and characterize simple conditions under which a dockless EVSS operator should

offer free rides to users who end their trip at a charging station. The hope is that these free

rides will ensure that the system has sufficiently charged vehicles to serve future demand.

As hinted at above, we seek free-ride policies that are straightforward for the system

operator to explain to the user, easy for the user to interpret, and simple to put into action.

All three of these characteristics are satisfied by what we call single-offer range (SOR)

policies. Under such policies, for each region in the network, there is a single, continuous,

battery charge level interval that dictates when a free-ride will be offered. Upon rental,

users who select a vehicle whose charge level falls within this interval will be offered a free

ride, and those who select a vehicle with a charge level outside of this interval will not be

offered a free ride. As we go on to show, these region-specific battery charge level intervals

can be computed offline in an efficient manner, and hence implementing these so-called

SOR policies is relatively straightforward compared to a nuanced dynamic pricing scheme.
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1.1. Contributions

We first consider an infinite horizon dynamic program that maximizes the total discounted

expected revenue when there are no restrictions on the structure of an optimal policy. The

state space of the resulting dynamic program gives the current location and battery level

of each vehicle, and the Bellman recursion encodes the trade-off between offering a free ride

to a charging station and letting the user take a full-priced ride to her desired end location.

This initial formulation has two central issues that hinder its practical use. First, the state

space grows exponentially in n and hence the dynamic program is rendered intractable for

realistic instances in which the EVSS system contains hundreds of vehicles. Second, even if

we could derive an optimal policy from this dynamic program, there is no guarantee that

it will be an easily implementable policy, let alone an SOR policy. In fact, it is not clear if

it is possible to formulate this dynamic program so that only SOR policies are feasible.

To side-step the first issue, we focus on single-vehicle networks. In this setting, we can

easily find the optimal policy, but again, there is no guarantee that this policy will be of the

SOR variety. One somewhat counter-intuitive insight that we derive from this simplified

one vehicle setting is that the value of a vehicle in a given location does not necessarily

increase with its battery level. In Section 3, we describe how this observation is directly

related to the second issue of deriving SOR policies. We eventually overcome this second

difficulty by reformulating the initial infinite horizon dynamic program as a linear program

(LP). By adding binary variables and a set of auxiliary constraints to this LP, we arrive

at a mixed-integer program whose optimal solution gives the optimal SOR policy.

We then consider the problem at full-scale, where there are n vehicles and m charging

stations in the network. In this setting, we develop free-ride policies based on the approxi-

mate dynamic programming technique developed in Desai et al. (2012) in which the value

functions in the original dynamic programming formulation of the problem are approx-

imated via a linear combination of basis functions. The optimal weights on each basis

function within the approximation are generated from the optimal solution to specially

crafted LP.

After deriving the optimal SOR policies from the single vehicle formulation of the prob-

lem and the approximate multi-vehicle policies that result from our approximate dynamic

programming solution, we test their efficacy within a large scale simulation that uses real

data from a U.S.-based EVSS. We benchmark the performance of these free-ride policies
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against our EVSS partner’s current practice, in which users who street-park low battery

vehicles are fined. Our simulation results reveal that the free-ride policies generate slightly

less revenue than the fine-based policy, but provide a significantly better customer experi-

ence, which is critical for the long term success of the system.

2. Literature Review

We begin by reviewing the previous work on BSSs and VSSs, which both pre-date EVSSs.

Then, we summarize the past work on EVSSs, which is limited since these systems have

only recently come into existence.

Bike Sharing Systems (BSSs). Past BSS research has predominantly focused on network

design. For instance, Lin and Yang (2011) determine where to build stations to maximize

coverage, Sayarshad et al. (2012) examine how fleet size affects demand, utilization, and

rebalancing costs, and Kabra et al. (2018) study the effect of increasing station density on

ridership. Freund et al. (2017) develop a procedure to optimally redistribute bicycle docks

across stations. All of these papers consider one-way BSSs, where riders can take bikes on

one-way trips, which must end at a docking station. Our setting is less restrictive since

users can take one-way trips, but they are not forced to end at a docking station.

Rebalancing in one-way BSSs has also been well-researched. This work involves efficiently

designing truck routes that minimize the time and cost of moving bikes between docking

stations (Raviv et al. 2013, O’Mahony and Shmoys 2015, Schuijbroek et al. 2017). Pricing

has also been studied as a mechanism to rebalance a BSS. Chemla et al. (2013) propose a

pricing strategy in which the fare is based on the availability at each station. Others have

focused on minimizing underused stations by incentivizing riders to return bikes to these

stations (Pfrommer et al. 2014, Singla et al. 2015, Fricker and Gast 2014).

While the existing BSS research can serve as a starting point for tackling operational

problmes in EVSSs, there are two features of our problem that have not yet been considered

in the BSS literature. First, to the best of our knowledge, the dockless component has

not been studied. Second, the charging element of EVSSs presents a new challenge that

does not exist in BSSs, since bikes are human-powered. However, as BSSs grow to include

electric-assisted bicycles, maintaining a charged fleet will require attention and we hope

that work in this area will draw inspiration from our research.
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Car or Vehicle Sharing Systems (VSSs). While the VSS literature is not as vast, problems

related to both system design (Chang et al. 2017, Lu et al. 2017) and rebalancing (Nair

and Miller-Hooks 2011, Weikl and Bogenberger 2013) have been studied. Rebalancing in

a BSS is inherently simpler than a VSS, since several bicycles can be placed on a truck

and manually redistributed across a city on a single route. The same can obviously not be

said for cars, so VSS rebalancing requires additional planning. We note that the existing

rebalancing approaches tend to be costly, resource-intense, and time-consuming.

Several researchers have also explored how to rebalance a VSS through pricing discounts.

Marecek et al. (2016) propose a destination-based pricing scheme in dockless VSSs, in

which the fare depends on the distance between the drop-off location and the nearest

parked vehicle, and Waserhole and Jost (2016) develop a queuing model for setting prices

in a one-way VSS to maximize the number of trips. While both papers capture the spirit

of the pricing policies that we analyze, neither of these models accounts for a vehicle’s

remaining battery, which is critical in an EVSS. Banerjee et al. (2016) provide a general

framework for pricing in any mobility sharing system, but it is not obvious if their approach

is able to capture the additional complexity of keeping the fleet sufficiently charged. For

an overview of system design and rebalancing in VSSs, see Jorge and Correia (2013).

Electric Vehicle Sharing Systems (EVSSs). To date, the EVSS literature has primarily

focused on system design. Boyacı et al. (2015) and Brandstatter et al. (2017) respectively

study where to place charging stations in one-way systems and parking locations in dock-

less systems. In the presence of uncertain adoption, He et al. (2017) use robust optimization

to define the service area for car2go’s dockless EVSS operation in San Diego, CA. Unfor-

tunately, car2go replaced the electric vehicles with gas-powered vehicles and later ceased

their San Diego service, confirming that operating a dockless EVSS is challenging (The

San Diego Union-Tribune 2016). For rebalancing an EVSS, Bruglieri et al. (2014) consider

how to dispatch cyclists on folding bikes to low-battery electric vehicles. Upon reaching the

vehicle, the cyclist places the collapsed bike in the trunk and drives to a relocation point.

In contrast, we focus on ensuring that the EVSS fleet has enough battery to complete rides

by offering a direct pricing discount to customers if they end rides at charging stations.

Related Research. Lim et al. (2014) examine the behavioral factors behind electric vehicle

adoption. Battery swapping, where users can go to stations to exchange depleted batteries

for recharged ones, has also been studied (Avci et al. 2014, Mak et al. 2013). Separately,
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Bellos et al. (2017) study how VSSs operated by auto manufacturers affects the firm’s

profit and decision to design more fuel efficient vehicles. This recent research related to car

sharing and electric vehicle usage suggests that both will continue to grow, motivating our

goal of effectively managing a system at the intersection of VSSs and EVs.

3. Dockless EVSS Models and Free-Ride Policies

We begin by describing our model of the EVSS and then move to detailing our approaches

for deriving the free-ride policies discussed above. More specifically, in Section 3.1 we

describe our model of the EVSS that we consider as well as its underlying dynamics that

govern how the system evolves over time. The model that we develop is highly realistic and

accounts for battery recharging of idle vehicles at charging stations, uncertainty rooted in

demand, manual repositioning movements by the system operator, and the utility trade-

off faced by customers who must choose to accept or decline a free ride. In Sections 3.2

and 3.3, we analyze a single-vehicle setting and develop a mixed-integer program to find the

optimal SOR policies in this setting. Finally, in Section 3.4, we summarize our approximate

dynamic programming approach for tackling the multi-vehicle problem.

3.1. Model Primitives

We partition the service area into r regions indexed by the set R= {1, . . . , r}. Each region

i∈R could represent a street, block or neighborhood depending on the desired granularity

of the system. There is a subset Z ⊂R of regions that house a charging station. The system

consists of n vehicles. We assume that a vehicle’s state can be fully described by the tuple

(i,w) where i∈R and w ∈W = {0, δ,2δ, . . . ,1} respectively represent the vehicle’s current

location and battery charge level. We use the convention that w= 1 corresponds to a full

charge, and δ ∈ [0,1] gives the granularity at which we keep track of battery charge.

We discretize time into disjoint time periods, whose length can be interpreted as the

mean time between customer arrivals to the system. In each period, we assume that there

is exactly one ride request. We let λi be the probability of seeing a vehicle request in region

i ∈R during each time period. Given a request for a vehicle in region i, we let pij be the

probability that the user’s desired end location is region j ∈R. We use bij ∈W to denote

the battery consumption of a trip from region i to region j. Further, we let dij, fij and tij

respectively be the distance, fare collected, and duration for rides between regions i and

j. A ride can only take place if the requested vehicle has sufficient battery to deliver the
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user to her desired destination. Thus, we let the set R(i,w) = {j ∈ R : w ≥ bij} give all

reachable regions of a vehicle whose state is (i,w). Finally, we assume that vehicles located

at charging stations gain γ ∈W charge in each time period.

Next, we discuss how we incorporate manual vehicle repositioning events by the system

operator into our model. Each vehicle is deemed eligible for a manual move to a nearby

charging station if its remaining battery is below a predefined battery move threshold bm.

In each time period during which there exists at least one move-eligible vehicle, we assume

that a repositioning event is initiated with probability pm. We model a repositioning event

as a “dummy” ride, in which a move-eligible vehicle is uniformly selected to be moved to

the closest charging station over a random duration of tm time periods. The dummy ride

reflects the efforts of a crew member and hence comes at a cost of cm to the system.

For each user that rents a vehicle, the system operator has the option to offer a free

ride to a charging station if the vehicle has enough battery to reach at least one charging

station. If a free ride is offered, the user decides whether to accept or reject this free ride

based on her realized utility for each of these two options. To formalize this notion, we let

u(d, f) be the random utility that a user associates with a ride that leaves her a distance of

d from her desired location and whose cost is f . The randomness in the utility arises due

to the assumption that there is heterogeneity in each user’s sensitivity to price and walking

distance. We refer the reader to Section 4.1 for the explicit form of the utility function

that we use in our simulations. If a free ride is offered and accepted, we assume that the

user parks the vehicle at the charging station closest to her desired destination. Finally,

we define P(Acceptijz) = P
[
u(dzj,0)≥ u(0, fij)

]
to be the probability that the user accepts

a free ride to charging station z. If the user accepts the free ride, she pays nothing and

must walk a distance of dzj after dropping off the vehicle at z. On the other hand, if she

rejects the offer, she commutes directly to j and pays fij, which occurs with probability

P(Declineijz) = 1− P(Acceptijz). All of the notation introduced above is summarized in

Table A.1.

3.2. Single Vehicle and Single Charging Station (1V1C)

We begin by studying a setting with a single vehicle and a single charging station, so

n= 1 and Z = {z}. We model the system’s dynamics as a discrete time, infinite horizon

dynamic program. The state space is given by the tuples (i,w) ∈R×W, which represent

the possible locations and battery levels of the vehicle. The value function V (i,w) gives
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the maximum total discounted expected revenue that can be derived from a vehicle in

state (i,w). The per-period discount factor is β ∈ (0,1) and we define βij = βtij to be the

discount rate for a ride between regions i and j, which takes place over tij periods.

Recall that in each time period, there is a customer arrival at region i with probability

λi, and this request is for a ride to region j with probability pij. If the vehicle has enough

battery to reach the destination, that is w≥ bij, then the inquiring user will rent the vehicle.

Otherwise, the user leaves the system and the vehicle remains at state (i,w). Further, if the

vehicle has enough battery to reach the charging station z, i.e., w ≥ biz, then the system

operator must choose whether or not to offer a free ride to z. Finally, we note that if the

vehicle’s remaining battery satisfies w ≤ bm, then the vehicle is manually repositioned to

the charging station with probability pm. In what follows, we present the value functions

of our dynamic program for the cases in which the vehicle is not at the charging station

(i.e., i 6= z) and has enough battery to reach the charging station (i.e. w ≥ biz). Thus,

the recursion in (1) illustrates the cases in which w ≥max{biz, bm}, and the recursion in

(2) corresponds to the case in which bm ≥ w ≥ biz. The remaining cases are presented in

Appendix B.

V (i,w) = max
{
λi

∑
j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
︸ ︷︷ ︸

DoNotOffer

,

λi
∑

j∈R(i,w)

pij ·
(
P(Declineijz) ·

(
fij +βijV (j,w− bij)

)
+P(Acceptijz) ·βizV (z,w− biz)

)
︸ ︷︷ ︸

Offer

}

+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w). (1)

V (i,w) =pm ·
(
− cm +βmV (z,w)

)︸ ︷︷ ︸
MoveOccurs

+(1− pm) ·

(
max

{
λi

∑
j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
︸ ︷︷ ︸

DoNotOffer

,

λi
∑

j∈R(i,w)

pij ·
(
P(Declineijz) ·

(
fij +βijV (j,w− bij)

)
+P(Acceptijz) ·βizV (z,w− biz)

)
︸ ︷︷ ︸

Offer

}

+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w)

)
. (2)

The maximization in (1) weighs the trade-off between offering and not offering a free ride,

which is only relevant when the user’s desired end location is reachable, i.e., j ∈R(i,w).
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If the vehicle does not have enough battery to reach region j, then the system stays in

the same state, but the value of the vehicle is discounted one period. The DoNotOffer

term corresponds to the scenario in which the system operator does not offer a free ride.

In this case, the system accrues fij in revenue and the vehicle moves to j, ending this trip

in tij periods (hence the discount factor βij) with a charge of w − bij. The Offer term

captures the value of offering a free ride and the recursion considers the probability that

this offer will be accepted by the user. If the offer is accepted, the vehicle reaches the

charging station z in tiz periods with w − biz remaining battery. If the offer is declined,

then the user rides to her desired destination and pays the full fare.

Equation (2) models a scenario in which the vehicle is in state (i,w) and has enough

battery to complete short trips, but is still eligible for a manual reposition to the charging

station. The structure of (2) is similar to (1), but the MoveOccurs term accounts for the

possibility of a manual repositioning event, which occurs with probability pm. If a manual

repositioning event occurs, the system incurs a cost of cm and the vehicle is moved to

the charging station z in tm periods. If the vehicle is not moved, then the value function

takes the form of (1). We note that the formulations in (1) and (2) can be modified to

incorporate more flexible discounts, in addition to or in lieu of the free-ride discounts. For

instance, offering a (1−σ)-discount for some σ ∈ [0,1] is possible by adding an additional

term into the maximization. This term would have the same structure as the Offer term,

but the system would realize a revenue of σfij and the utility gained from accepting the

(1−σ)-discounted ride would be u(dzjj, σfij). This generalization would allow the system

operator to offer a full-fare ride, a (1−σ)-discounted ride, or a free ride.

Free-ride policies. For free-ride policy π : R×W 7→ {DoNotOffer, Offer}, we define

Sπ = {(i,w) : π(i,w) =Offer} to be the set of states in which a free-ride is offered . A free-

ride policy π is a single-offer range (SOR) policy if for each region i, there exists battery

charge levels wi
2 ≥wi

1 ≥ biz, such that if the vehicle is in state (i,w), then π(i,w) =Offer if

and only if w ∈ [wi
1,w

i
2]. We let Π and ΠSOR ⊂Π respectively denote the set of all free-ride

policies and all SOR policies. Further, let π∗ ∈Π be the optimal free-ride policy, which can

easily be derived via value function iteration since the dynamic program given in (1)-(2)

has only r · |W| states, however there is no guarantee that π∗ ∈ΠSOR.

Next, we present conditions that would guarantee that π∗ ∈ΠSOR. At first glance, these

conditions seem to be trivially satisfied for any reasonable network, however we are able
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to present simple counter-example to break this intuition. First, note that by re-arranging

the DoNotOffer and Offer terms in (1) and (2), we see that π∗(i,w) =Offer if∑
j∈R(i,w)

pij ·P(Acceptijz) ·
(
βizV (z,w− biz)−βijV (j,w− bij)− fij

)
≥ 0, (3)

and w≥ biz. Hence an SOR policy will be optimal if βizV (z,w− biz)≥ fij +βijV (j,w− bij)
for a single continuous battery charge level interval. A sufficient pair of conditions for this

to hold are (i) the value functions V (i,w) are increasing in the battery level w and (ii) the

marginal value of each percentage of charge is larger at charging stations than at standard

regions. With respect to (i), it seems intuitive that a vehicle with more charge should be able

to generate more revenue than a vehicle with less charge, since vehicles with more charge

can serve a broader collection of ride requests. However, we quickly discovered that it is not

difficult to construct a system in which more battery is not always beneficial. An example

of such a network is provided in Appendix A of the Online Appendix. Consequently, (3)

can be satisfied for several, disjoint battery ranges and hence π∗ is not guaranteed to be

an SOR policy. In what follows, we show how to use the above dynamic program to obtain

optimal SOR policies in a setting with a single vehicle and multiple charging stations.

3.3. Single Vehicle and Multiple Charging Stations (1VMC )

In this section, we consider an EVSS with a single vehicle and m charging stations indexed

by the set Z = {1, . . . ,m}. We assume that if a user whose desired destination is region j

accepts a free ride, then she will only park her vehicle at the charging station closest to

her destination, which we define as zj = arg minz∈Z djz. We define b̄i = minz∈Z biz as the

minimum battery level required to reach a charging station from region i, and note that

the system operator will only consider offering a free ride if the vehicle’s battery level

satisfies w≥ b̄i, so at least one charging station can be reached. Since we assume that each

user’s destination is unknown to the system, it is possible for a free ride to be offered to a

user who cannot reach the charging station closest to her desired location. In the case, we

assume that the user will reject the free ride.

To find the optimal SOR policy, we first consider the equivalent linear programming

of the dynamic program for the 1VMC instance, which is provided in Appendix B. For

simplicity, in the LP that follows, we only include the constraints for the cases in which

i 6∈Z and w≥ bm, but note that the analysis holds when the constraints are added for all

cases. Let
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V no(i,w) = λi
∑

j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w)

and

V o(i,w) =λi
∑

j∈R(i,w):
w≥bizj

pij ·
(
P(Declineijzj ) ·

(
fij +βijV (j,w− bij)

)
+P(Acceptijzj ) ·βizjV (zj ,w− bizj )

)

+λi
∑

j∈R(i,w):
w<bizj

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w),

where these two expesions respectively correspond to the case in which the system operator

does not and does offer a free ride. The linear program of interest in given below

Z∗ = min
V (·)

∑
i∈R

∑
w∈W

V (i,w) (LP Full)

V (i,w)≥ V o(i,w) ∀i 6∈ Z,w≥max{bm, b̄i}

V (i,w)≥ V no(i,w) ∀i 6∈ Z,w≥max{bm, b̄i}

V (i,w) = λi
∑

j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w) ∀i 6∈ Z, bm ≤w< b̄i.

From the optimal solution to LP Full , which we denote as V ∗(i,w), we can find the

optimal free-ride policy by setting π∗(i,w) =Offer if V ∗(i,w) = V o∗(i,w), and hence the

set of states where the system operator should offer a free ride is Sπ∗ = {(i,w) : V ∗(i,w) =

V o∗(i,w)}. In fact, for any free-ride policy π ∈Π, we can find the total discounted expected

revenue from a vehicle in region i with battery level w by solving the following LP

Z(π) = min
V (·)

∑
i∈R

∑
w∈W

V (i,w) (LP Policy)

V (i,w) = 1(i,w)∈SπV
o(i,w) +1(i,w)/∈SπV

no(i,w) ∀i 6∈ Z,w≥max{bm, b̄i}

V (i,w) = λi
∑

j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w) ∀i 6∈ Z, bm ≤w< b̄i.

Building on the above two LPs, we can find the optimal SOR free-ride policy by solving

the following mixed-integer linear program

Z̃ = max
∑
i∈R

∑
w∈W

V (i,w) (Single Threshold)

V (i,w)≤ V o(i,w) +Mxno(i,w) ∀i 6∈ Z,w≥max{bm, b̄i}

V (i,w)≤ V no(i,w) +Mxo(i,w) ∀i 6∈ Z,w≥max{bm, b̄i}

V (i,w) = λi
∑

j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
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+
(

1−λi
∑

j∈R(i,w)

pij

)
·βV (i,w) ∀i 6∈ Z, bm ≤w< b̄i

xo(i,w) +xno(i,w) = 1 ∀i 6∈ Z,w≥max{bm, b̄i}

xo(i,w− δ)≥ xo(i,w)− y(i,w) ∀i 6∈ Z,w− δ≥ b̄i (4)∑
w∈W

y(i,w) +xo(i, b̄i)≤ 1 ∀i 6∈ Z (5)

xo(i,w), xno(i,w), y(i,w)∈ {0,1} ∀i 6∈ Z, w≥max{bm, b̄i},

where M is a large constant. The binary decision variables xo(i,w) and xno(i,w) respec-

tively denote whether or not a free ride is offered when the vehicle is in state (i,w). The

binary variable y(i,w) denotes whether or not battery w is the lower threshold battery

level wi
1 for region i. The upper threshold wi

2 is equal to 1 if xo(i,1) = 1, otherwise it is

equal to smallest w such that xo(i,w)− xo(i,w + δ) = 1. Furthermore, we call attention

to two fundamental changes in Single Threshold in relation to LP Full : (1) the objective

is a maximization and (2) the sign of the inequalities in the constraints is reversed. In

Single Threshold , the “big-M” terms in the first two constraints force the one of the two

right-hand sides of these constraints to be quite large, effectively making this constraint

irrelevant. The constraint without the large right-hand side is the binding constraint and

corresponds to the optimal action that maximizes the expected discounted reward.

In the optimal solution to Single Threshold , we refer to the optimal, binary decision

variables as x̃o(i,w), x̃no(i,w) and ỹ(i,w). Based on this optimal solution, we define the

free-ride policy π̃(i,w) =Offer if x̃o(i,w) = 1, and therefore Sπ̃ = {(i,w) : x̃o(i,w) = 1}. In

the following proposition, we show that π̃ ∈ΠSOR. All proofs are provided in Appendix B

of the Online Appendix.

Proposition 1. Let π̃ be the free-ride policy derived from Single Threshold. We have

that π̃ ∈ΠSOR.

Next, we build on Proposition 1 and show that π̃ is actually the optimal SOR policy.

Theorem 1. The policy π̃ that is derived from the optimal solution to Single Threshold

is the optimal SOR free-ride policy. In other words, π̃= arg maxπ∈ΠSOR
Z(π).

Theorem 1 shows that we can recover the optimal SOR policy by solving Single Threshold

and constructing π̃.

 Electronic copy available at: https://ssrn.com/abstract=3391937 



Nyotta, Bravo, Feldman: Free Rides in Dockless, Electric Vehicle Sharing Systems
15

3.4. Multiple Vehicle and Multiple Charging Stations (NVMC)

For the multiple vehicle setting, our dynamic program must keep track of the location and

battery level of every vehicle in the network. Further, since each ride can last multiple time

periods, we also must account for vehicles that are currently in use. More formally, the state

of each vehicle can be represented by the 4-tuple (i,w, τ, j), where i∈R gives the vehicle’s

current (or last) location, w ∈W gives the vehicle’s battery level when it was at region i,

and τ gives the number of time periods until the vehicle reaches the desired destination

j. We assume access to each user’s end destination j only after deciding whether or not

to offer them a free ride. If the vehicle is idle, we set τ = 0 and j = 0 . Finally, we let S

be all possible 4-tuples for the n vehicles of the system, and for state s ∈ S, we let V (s)

be the optimal value functions. We do not give the explicit form of these value functions

since they are simply more cluttered versions of those presented for the 1VMC problem

instance. Naturally, computing the optimal policy in this setting, much less characterizing

its structure, is quite a difficult task. As such, we elect to employ the approximate dynamic

programming approach of Desai et al. (2012). In what follows, we summarize this approach

and describe how we apply it to our setting.

We develop and test free-ride policies by solving the smoothed approximate linear pro-

gram (SALP) introduced by Desai et al. (2012). In this approach, the dynamic program is

formulated as an equivalent linear program and the value functions are approximated by a

linear combination of L basis functions, which capture key properties of the state of the sys-

tem. More specifically, we approximate the value functions V (s) by Ṽ (s) =
∑L

l=1 rl ·φl(s),

where φl : S 7→ R is the l-th basis function and rl is its weight. These weights are the

decision variables within the linear program. Once the optimal weights have been derived,

free-ride policies can be developed by using the value function approximations Ṽ (s) to

approximate the revenue trade-off between offering a free ride or letting the user take her

desired ride.

This approximation reduces the number of variables in the LP formulation of the

dynamic program (we have just L decision variables, one for each basis function), but

there is still a constraint for every state-action pair, and hence the resulting linear program

can be intractable when the state space is large, as is the case in our problem. In such

scenarios, Desai et al. (2012) propose an approach in which the constraints are randomly

sampled and then the linear program is solved using this subset of states. Further, the
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optimal solution to this linear program is permitted to violate the constraints up to a cer-

tain “budget”, whose magnitude reflects the extent to which the sampled linear program

is further approximated. We explain how we sample constraints and choose the budget in

Appendix F of the Online Appendix. Surprisingly, Desai et al. (2012) show both theoret-

ically and numerically that the number of constraints that one must sample to arrive at

reasonable1 approximation of the original linear program that contains all possible con-

straints does not depend on the size of the underlying state space S, but only on L, the

number of basis functions.

4. Numerical Experiments

In this section, we present the details and results of a series of three distinct large-scale

discrete event simulations, which we carry out on EVSS networks inspired by those of

our collaborator. We crafted these experiments in an effort to study the efficacy of free-

ride policies under varying demand patterns and system parameters. We benchmark the

performance of the free-ride policies that we develop against our EVSS collaborator’s

current fine-based practice, under which users are fined for street-parking low-battery

vehicles. We present the details of our experiments in the following three sections. In

Section 4.1, we begin by providing a high-level description and motivation for each of the

three experiments that we conduct. Following this high-level summary of each experiment,

we describe the key ingredients and assumptions that go into setting up and running each

experiment. Next, in Section 4.2, we discuss the various policies that we test, and list the

performance metrics that guide our assessment of each policy’s performance. Finally, in

Section 4.3, we summarize the results of the three experiments, and in doing so, we provide

high-level managerial insights that surface from our extensive series of simulations.

4.1. The Three Experiments: Motivation and Set-Up

We begin by summarizing the distinguishing features and high-level goals of our three

experiments. This summary is followed by a description of how we design and set up each

individual experiment to match these intentions. As part of this latter description, we

explain how we use the historical ride data provided to us by our EVSS collaborator, which

includes transactional data based on all rides from 9/20/15 to 11/21/15. Each vehicle in

1 The exact theoretical guarantee is fairly technical and hence we leave our description of this guarantee at this high
level.
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the fleet is equipped with a device that continually transmits information every minute to

the company’s database. As a result, for each ride, we know the starting and ending times-

tamps, origin and destination coordinates, fare paid, battery consumed, distance traveled,

and a variety of other readings. As suggested by the company, we removed rides greater

than 15 miles, since it is likely that these rides do not reflect a commute, but rather a

leisure trip without a pre-conceived destination. Further, we removed rides that end in

regions that do not serve as an origin for any other rides, since these rides will create

“sink” regions in our simulation. The data cleansing ultimately leaves us with ∼28,300

rides. About 85% of these rides are less than an hour, and the average distance traveled is

3.6 miles. It is important to note that over the two month period that our data set spans,

the system was static and had no change in fleet, service area, or pricing. As we discuss

later on, in each of the three experiments, we use this data set to varying degrees to guide

our choices for the key system parameters within our simulations.

The three experiments that we conducted are respectively labeled True EVSS, Parame-

ter Sensitivity, and Demand Sensitivity and are summarized below. We note that we refer

to the arrival probabilities λi and the transition probabilities pij as demand parameters,

while any other system parameter is referred to as an operational parameter.

• Experiment True EVSS: The intent of this first set of experiments is to measure the

performance of each policy that we consider using a simulated EVSS network that most

closely resembles that of our collaborator. For this purpose, we use the historical ride data

to guide many of the underlying parameter values within our discrete event simulation.

We carry out this simulation on only a single set of parameter values, which we refer to

as the baseline parameters. We believe these values to be the most realistic based on the

historical ride data and discussions with our EVSS collaborator.

• Experiment Parameter Sensitivity: In this experiment, we fix demand to be uniform

across the network, and then we study the overall impact of changing key operational

parameters on both the performance of various policies, and on the specific structure of the

optimal SOR policies. We delay a detailed description of the exact nature of this parameter

sensitivity analysis until after fully formalizing the set-up of our simulations.

• Experiment Demand Sensitivity: In our final experiment, we fix all of the operational

parameters that were varied in the previous experiment to the baseline values, and instead

only vary the two parameters related to demand. Our goal in this setting is to understand
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how the performance and structure of the optimal SOR policies is affected by shifting the

demand towards or away from the charging stations in the network. Again, we delay a

formal description of how we vary demand in this way until after fully formalizing the

set-up of our simulations.

Next, we move to describing how we set up each of the three experiments. As should

be evident from the summaries above, the three experiments only differ by the manner in

which the demand and operational parameters are set and varied across simulations. As

such, the experimental set-ups for each of experiment share quite a bit of common ground.

In an effort to succinctly describe the set-up for each experiment, we first describe their

shared features, before sequentially addressing the defining elements that make each of the

experiments unique.

Common features of each experiment. In what follows, we detail the elements of our

simulation that remain fixed as we move from experiment to experiment. First, among

these common elements is the structure of the underlying EVSS network, which includes

how we partition the service area into discrete regions, the number of vehicles in the

system, and the number/location of the charging stations. Furthermore, throughout each

of our experiments, we use the same random ride generator to determine each user’s exact

trip when they rent a vehicle, and we also use the same random utility model to capture

customer preferences when a free ride is offered. Finally, the random process governing

manual respositions by the system operator remains unchanged across the experiments.

Next, we discuss each of these common aspects individually in greater detail.

EVSS network. The service area that we use within the simulations is modeled off of the

location of our EVSS collaborator. We create a discretized service region by partitioning our

EVSS collaborator’s service area into a collection of square regions that compriseR, the set

of feasible locations for vehicles and charging stations within our models and simulations.

The size of each square was chosen so that it takes no more than four minutes to walk from

end-to-end based on the assumption that people walk at 3.1 miles per hour (Browning

et al. 2006). This partitioning scheme leaves us with 577 square regions, where the distance

between opposite corners is approximately 0.2 miles. Our EVSS collaborator has charging

stations positioned in 40 of these regions, and manages a total of 300 electric vehicles.
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Generating trips. To generate the inter-arrival times of users, we fit the historical inter-

arrival data to several distributions and find that the best fit is the inverted beta distri-

bution with shape parameters α= 0.92 and β = 4.07, location parameter = 0.01, and scale

parameter = 8.86. This parameter set gives a mean inter-arrival time of 2.66 minutes, which

we use as our period length when deriving the discount policies. If a customer arrives to a

region with several vehicles available, we assume that she always rents the highest-charged

vehicle 2. In the event that a vehicle is rented in region i∈R and the user’s desired location

is j ∈ R, we use a linear regression model fitted to the historical ride data to randomly

generate the ride duration (in minutes) tij and battery consumption bij of the given user’s

trip. We refer the reader to Appendix C.1 of the Online Appendix for the full regression

output and a detailed description of how the regressions are used to generate each ride in

the simulation. The fare for the given trip is then set to be fij = 1 + 0.15 · tij, which is a

pricing scheme vetted by our collaborator and common in many modern dockless EVSSs.

Customer utility model. If the system operator offers a free ride, we assume that the user

trades off the inconvenience of walking a distance of d to her desired destination and paying

a fare of f for her ride. We capture this trade-off using a common linear structure for the

utility function throughout all of our experiments. More specifically, we set u(d, f) =−αd ·

d− αf · f , where αd ∼ U(0,DM), αf ∼ U(0,1) are generated randomly for each arriving

user. The operational parameter DM captures the extent to which there is variability

within the customer population with regards to the inconvenience of walking the extra leg

to the desired destination of the user. Note that we only consider the disutility associated

with each ride, however this utility function could easily be updated by simply adding a

constant term µ, which reflects the utility gained from a successful commute. We discard

this positive term simply for notational convenience.

Manual repositioning events. Finally, recall that a vehicle is deemed move-eligible if it has

a battery level below bm. Furthermore, in each time period, if there are any move-eligible

vehicles in the network, then with probability pm we uniformly select one to be moved to

a charging station. The selected vehicle is then assumed to be unavailable for a random

amount of time, generated from a truncated normal distribution with a mean of four hours

and standard deviation of 30 minutes. Given that such moves could require an employee

2 Our historical data set does reveal that users generally choose the highest charged vehicle when presented with a
choice among many vehicles.
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to go between opposite ends of the city, we felt this was a reasonable distribution for the

time required for a manual move.

Battery recharging. When solving for the policies that we test, we discretize the set of

battery levels W by δ = 0.02. Further, we set the re-charging rate to be γ = 0.02 , which

corresponds to a charging time of 2.25 hours to replenish a completely depleted vehicle.

While our collaborator’s vehicles take 3-5 hours to fully recharge, we were not able to

discretize the battery levels in any finer increments than 0.02 and still tractably solve Single

Threshold to optimality in a reasonable amount of time. In the simulation however, we

take a more conservative approach and assume that the battery takes 5 hours to replenish.

Distinguishing features for experiment True EVSS. As noted above, the intention of

this experiment is to recreate the EVSS network of our collaborator with as much accuracy

and nuance as possible. For this purpose, we use the historical ride data to govern the

demand parameters. More formally, for each region i, we set λi = # of rides originating at i
# of total rides

, and

for each pair of regions i, j ∈ R, we set pij = # of rides from i to j
# of rides originating at i

. In total, the data set

of ∼28,300 rides is spread across 16,720 unique origin-destination pairs out of a possible

r2 = 332,929 such pairs. The remaining set of operational parameters are fixed to the

following values, which we denote as our baseline parameter set. We set the cost cm of

a manual move to be $25 since this is the fine our collaborator enacts for street-parking

a low-battery vehicle that eventually must be moved to a charging station. We set the

battery move-threshold bm = 0.2, the probability of a move pm = 20%, and the dollar-to-

mile sensitivity parameter in the customer utility function DM= 5. These values are our

best guesses at reality after several discussions with our EVSS collaborator.

Distinguishing features for experiment Parameter Sensitivity. In this experiment, we

assume uniform demand and transition probabilities across the entire network. As a result,

rides between any pair of regions can occur, hence we have r2 possible trips and we set

λi = pij = 1
r
. The motivation behind this assumption is rooted in the historical arrival

probabilities, which are reasonably uniform across each region as indicated in the heatmap

of λi in Appendix G of the Online Appendix. For this fixed uniform demand pattern, we

vary pm = {5%,10%, 20%} and use a battery move thresholds of bm ∈ {0.05, 0.10, 0.20}.
We also consider manual move costs of cm ∈ {$5, $25, $50} and dollar-to-mile sensitivity

parameter DM∈ {0.5,5,20}. The baseline values introduced in our description above of

experiment True EVSS are bolded for reference.
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Distinguishing features for experiment Demand Sensitivity. In this final experiment,

we fix the operational parameters at their baseline values and we vary the two demand

parameters to capture scenarios in which demand is either generally close or far away

from the charging stations. In total, we test nine different ride patterns that are generated

by varying arrival and destination demand to reflect the following three scenarios: either

clustered close (C) to charging stations, uniform (U) across the service area, or far (F)

from charging stations. When demand is assumed to be clustered close to (far away from)

charging stations, we assume that the arrival probability at region i and the probability

that a user ends her trip at region i is linearly decreasing (increasing) in dizi , the distance

between region i and its closest charging station. Specifically, when demand is close to

charging stations, we set λi =
d∗−dizi∑
j∈R d

∗−djzj
, where we define d∗ = 0.1 + maxj∈R{djzj}. Note

that regions that are closer to charging stations will have larger arrival probabilities. When

demand is assumed to be farther from charging stations, we set λi =
0.1+dizi∑
j∈R 0.1+djzj

. In both

cases, we use the additive factor of 0.1 to ensure that the relative magnitudes of the arrival

probabilities are reasonable and non-zero. We set the transition probabilities for each of

the three scenarios in a similar fashion.

4.2. Policies Tested and Performance Metrics

In this section, we summarize the various free-ride and benchmark policies that we imple-

ment within the three experimental settings that we consider. We begin by describing the

handful of free-ride-based policies that are derived from the models presented in Section 3.

These policies are all computed using a discount factor of β = 0.999 and discretized battery

levels in increments of δ = 0.02. Next, we describe two benchmark policies; one of which

is the current fine-based practice of our EVSS collaborator and the other is a “hands-off”

policy in which the system operator lets the system unfold naturally. We then detail the

numerous performance metrics that we use to measure the efficacy of each policy. The

union of all policies that we consider across the three experiments are summarized below:

1VMC-SOR: This is the optimal SOR free-ride policy π̃ that is derived by solving Single

Threshold . Recall that under the policy π̃, we offer a free ride each time that a user rents

a vehicle in region i with battery level w and (i,w)∈ Sπ̃.

1VMC-50: This is the discount-ride policy that we derive from solving the 1VMC

dynamic program modified so that in addition to having the option to offer a free-ride, the

system operator can also offer a half-priced, or 50%-discounted, ride.
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NVMC-SALP: This is the policy derived from solving the smoothed-ALP described in

Section 3.4. Due to the fact that this policy is computationally intensive to implement,

we only consider its performance in experiment True EVSS. We seed our value func-

tion approximation using ten basis functions, which we list in Appendix F of the Online

Appendix along with other key details for implementing this policy.

Fine-Based (FB): Under the Fine-Based policy, users will be fined $25 for street-parking

a vehicle that has a charge level less than bm, the battery threshold for a manual move. The

user can avoid this fine by parking the low-battery vehicle at a charging station. This is the

current policy implemented by our EVSS collaborator to alleviate “stranded” low-battery

vehicles in their network. Hence the interesting scenario within the simulation arises when

the user’s preferred trip does not end at a charging station and leaves the rented vehicle

depleted. In this case, the user will trade off the utility u(0,$25 + fij) of incurring a fine,

but getting to her desired location, with the utility u(dzjj, fij) of dropping the vehicle at a

charging station. Ultimately the user will select the higher utility option.

Never-Offer (NO): Under this policy, the system operator lets the system unfold nat-

urally and so the only way for a vehicle’s battery to be replenished is if the customer’s

intended destination is a charging station or if the vehicle is selected for a manual reposi-

tioning to a charging station.

We evaluate the performance of these policies via Monte Carlo simulation. Each simula-

tion begins with fully-charged vehicles assigned to regions according to the distribution of

arrival probabilities, and then runs for 100 days. Since the network we consider is fairly

large, we use the first 70 days in each simulation as a warm-up period. Using rides from

the last 30 days, we compute a wide variety of performance metrics, which are all listed in

Table 1. The values that we eventually report in our results are per-day averages of each

metric over 30 distinct simulations of the 100 day time horizon. We note that we do not

report profit in Table 1, but we do track revenue generated from fares and the number of

manual repositioning moves, which is a proxy for operational costs. Both of these metrics

can be used together to develop a sense of profit. Additionally, for experiments Parame-

ter Sensitivity and Demand Sensitivity, we summarize the structure of the SOR policies

that we derive from solving Single Threshold by reporting the average battery charge-level

range that characterizes these threshold-based policies.
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Table 1 Description of Performance Metrics.

Metric Description

Revenue Daily revenue accrued by the system.
Rides Completed Rides taken per day.
Moves Number of manual repositioning moves completed per day.
Offers Number of discounted-ride offers extended per day. For the Fine-Based

policy, this is the number of times per day that a customer decides
between accepting or avoiding a fine.

Accepts Number of discounted-ride offers accepted per day. For the Fine-Based
policy, this is the number of times per day that a customer avoids a fine
by ending their trip at a charging station.

Unmet Demand | Vehicle Total unmet demand per day due to users not finding a vehicle at their
origin region or at one of the neighboring regions.

Unmet Demand | Battery Total unmet demand per day due to vehicles not having enough charge.
Utility per Ride Average utility of users who were offered the discounted ride option. For

the Fine-Based policy, this metric is computed only using rides where
the user had to trade-off a fine and the inconvenience of dropping the
vehicle at a charging station.

Average Battery Average charge of the fleet (with and without the vehicles at charging
stations) at the end of the day.

Proportion in Z Proportion of the fleet at a charging station (in Z) at the end of the day.
Rides Fulfilled at i Proportion of rides fulfilled at a customer’s arriving region versus at one

of the neighboring regions.

4.3. Results and Managerial Insights

In this section, we sequentially present the results of each experiment. In doing so, we

concisely summarize the core trade-off between revenue earned and customer satisfaction

that arises when designing incentive-driven (or penalty-driven) policies in dockless EVSS

networks. Furthermore, we highlight the high-level managerial insights that we are able to

glean from our simulations, which we believe to be impactful take-home points.

Results of experiment True EVSS. The performance of all five policies listed above is

presented in Table 2. What is immediately evident is that the Fine-Based policy garners

more revenue that the discount-based policies, but users of the system under the Fine-

Based policy experience at least double the disutility of users in the discount-based policies.

More specifically, we observe that the revenue earned under the Fine-Based policy is 2%

and 10% higher than the revenue earned under the NVMC-SALP and 1VMC-SOR policies

respectively. This trend is likely a result of the stringent $25 fine that is enough to prevent

users from leaving uncharged vehicles on the street, without having to discount their ride.

Consequently, users will often forgo their desired ride in order to avoid a fine, and instead

park the vehicle at a (potentially undesirable) charging station. This leads to far fewer
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manual moves per day, but an average utility that is ten times worse than the 1VMC-

SOR policy. Hence the notion that the Fine-Based policy generates the most revenue

should be taken with a grain of salt, as our simulation does not account for the long-term

consequences of a dissatisfied user-base. In short, the potential negative impact of the Fine-

Based policy on customer satisfaction could outweigh the short-term benefits of increased

revenue.

Results of experiment Parameter Sensitivity. Recall that in this experiment, we depart

from the historical demand patterns and set the arrival and transition probabilities to

be uniform across the entire network. For this fixed demand pattern, we consider eight

configurations of the operational parameters, where each configuration is distinguished by

a deviation from the baseline setting along one parameter. More specifically, we test cm ∈
{$5,$25,$50}, bm ∈ {0.05,0.10,0.20}, pm ∈ {5%,10%,20%}, and DM∈{0.5,5,20}, where

the bolded values indicate the baseline values. Again, we arrive at eight different parameter

configurations by choosing one parameter whose value will deviate from the baseline, and

then enumerating over all such combinations. For this second experiment, we only test the

1VMC-SOR and the Fined-Based policies, whose performance along all of the dimension

listed in Table 1 is reported in Appendix D of the Online Appendix. While our primary

focus of this experiment is to conduct a performance sensitivity analysis with regards to

the many operational parameters, we first comment on the relative overall performance of

the two tested policies. In general, we observe that the relative performance of these two

policies matches that of experiment True EVSS, however interestingly, when we consider

the test case where the battery move threshold is set to its lowest value (bm = 0.05), the

FB policy is dominated by the 1VMC-SOR policy along all performance metrics. This is

likely a result of the fact that when bm is low, users can street-park low-battery vehicles

that cannot serve many future rides without incurring a fine.

With regards to the sensitivity analysis, Table 3 summarizes the impact of varying

each operational parameter on the performance of 1VMC-SOR policies. More specifically,

this table presents the percentage change in each performance metric as the operational

parameters cm and bm are changed from their baseline values. This table does does include

the sensitivity analysis for DM and pm since changing these parameters had only a mild

impact on the many performance metrics that we consider. Of particular interest is how the

repositioning cost cm affects the number of manual repositioning events, which is reported
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in column four of Table 3. When the cost cm decreases, the system realizes 16% more

revenue, but the caveat is that the number of manual movements jumps by 238% because

manual moves are cheaper. As expected, the system relies on manual repositioning much

more to bring vehicles back to charging stations when cm is low. When the cost cm is

higher, we see the opposite effect: accrued revenues drop by 9% and the system utilizes free

rides instead of high-cost more manual movements to keep to prevent stranded low-battery

vehicles. Interestingly, we also see dramatic swings in the levels of both types of unmet

demand as the battery-move threshold bm is changed. Naturally, as bm is decreased from

its baseline value of 0.2, we see more unmet demand due to insufficient battery levels, since

low-battery vehicles will not always prompt a manual move. However, increases of over

100% and 800% are surprising and reflect the potential impact of the parameter bm. These

large percentage increases can be explained by noting that when bm is set to its lowest

value of 0.05, a vehicle with a battery level of 0.06, for example, will not be manually

moved to a charging station and will result in lots of unmet demand due to the fact that

this vehicle cannot serve many rides.

In addition to monitoring changes in performance metrics, we also study how the struc-

ture of the SOR policy changes as we vary key operational parameters. The first column

of Table 4 reports the average length of the offer range across all regions of the SOR policy

under each parameter configuration that we consider. The remaining three columns report

the correlation of the length of the offer range with several region-specific features, such

as the arrival rate λi and the expected battery consumption from i when the vehicle is

fully charged (i.e., w= 1). Note that if the correlation is negative, the average SOR length

decreases with the corresponding feature. This analysis helps illuminate additional drivers

behind the frequency with which free-rides are offered. For instance, the last column indi-

cates that offer ranges are larger at regions where users take rides that consume more

battery, since, in this case, vehicles are more likely to end trips with low battery.

Perhaps the most striking insight from Table 4 is how the cost of manual moves cm and

customers’ willingness to walk DM impact the length of the SOR. Our results indicate

that the mean SOR length approximately doubles both when cm increases from $5 to $50,

and when the variability in willingness to walk increases from DM= 0.5 to DM= 20. This

latter change corresponds to a decrease from 97% to 49% in the probability of accepting

a free-ride offer, and hence we observe larger free-ride offer ranges as the system operator

faces more uncertainty surrounding each customer’s response to a free-ride offer.
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Results of experiment Demand Sensitivty. In this experiment, we fix the operational

parameters at their baseline values and we study the impact of varying demand patterns on

the performance of the Fine-Based and 1VMC-SOR policies. For the 1VMC-SOR policy,

we also study how the structure of the SOR changes as we shift demand. To accomplish

this task, we create nine different demand settings which are characterized by the gen-

erall proximity of the underlying demand to the scattered charging stations. The full set

of results are presented in Table 5, where the performance of the 1VMC-SOR policy is

reported relative to that of the Fine-Based policy on six different performance metrics (the

top six charts) for each of the nine demand scenarios. The full set of results are available

in Appendix E of the Online Appendix.

As is the case in the previous two experiments, the revenue generated under the Fine-

Based policy is greater than that generated under the 1VMC-SOR policy over each demand

scenario that we consider. However again, this realization should be taken with a grain

of salt, since this lower revenue is driven by the fact that the 1VMC-SOR policy forgoes

revenue in exchange for the opportunity to keep a charged fleet, and not because it fulfills

fewer rides per day. As a result, the 1VMC-SOR policy is indeed able to preserve a higher

charged fleet, which in turn results in less unmet demand as users are able to access

sufficiently charge vehicles that allow them to take their desired rides. And like we see in

the previous experiments, the free-ride policy provides a better customer experience with

an average disutility that is 13-16% of the disutility under the Fine-Based policy.

We note that the metric most strongly affected by the shifting demand is the number of

moves per day. As users’ intended destinations shift to being farther from charging stations,

the number of manual moves decreases. This occurs because free rides are offered more

liberally in this setting in an attempt to lure vehicles back towards charging stations.

The bottom three charts in Table 5 show how the structure of the SOR changes as

demand is varied. Generally, we find that if users are already planning on ending their trip

near a charging station, then there is less of a need to offer discounts to charging stations.

When the demand pattern flips in the opposite direction and users generally begin their

rides near charging stations and end far away from charging stations, then the SORs are

selected to be quite large in an effort to keep traffic in close proximity to where demand is

expected to arise. The results in the bottom right of Table 5 shows that dizi , the distance

between each region and its closest charging station, can be useful in characterizing SOR
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length when destinations are far away from charging stations. In the left-most column (i.e.,

pij = C), the correlation between distance and offer range is fairly non-existent, but as

the destinations move farther away from charging stations, the correlation becomes larger.

One explanation for this phenomena is that when regions near charging stations are not

common destinations, free rides need to be offered liberally to maintain a charged fleet.

Table 2 Experiment True EVSS: Performance of Policies on Historical Data.

Metric 1VMC-SOR 1VMC-50 NVMC-SALP NO FB

Revenue $2,174.39 $2,184.89 $2,336.79 $2,391.83 $2,386.87
Rides Completed 348.84 344.44 347.31 350.16 349.61
Moves 8.31 5.39 24.24 24.50 2.26
Offers 35.79 62.01 5.62 − 38.40
Accepts 32.05 49.96 5.06 − 36.11
Unmet Demand | Vehicle 79.65 84.97 79.82 77.16 77.50
Unmet Demand | Battery 3.33 2.42 4.70 4.50 4.71
Utility per Ride -0.47 -2.06 -0.47 − -4.75
Average Battery (All Vehicles) 71.2% 75.5% 68.0% 66.9% 68.3%
Average Battery (w.o. Vehicles at Z) 55.4% 58.9% 51.8% 51.9% 53.1%
Proportion at Z 41.1% 46.3% 39.0% 36.6% 38.1%
Rides Fulfilled at i 55.9% 55.5% 55.7% 55.9% 56.0%

Simulation based on historical ride demand and baseline parameters. Vehicles start at 50% battery. Metrics are averaged

over 15 demand sample paths.

Table 3 Experiment Parameter Sensitivity: Impact of Network Parameters on Performance Metrics.

Parameter
Change

Revenue
Rides

Completed
Moves Offers

Unmet
Demand
Vehicle

Unmet
Demand
Battery

Average
Battery

Proportion
in Z

Baseline $1,185 231.5 4.84 63.70 196.83 4.31 0.88 0.78

cm = $5
$1370 238.5 18.53 40.21 184.78 9.32 0.84 0.74
(16%) (3%) (283%) (-37%) (-6%) (116%) (-4%) (-5%)

cm = $50
$1074 217.5 3.09 65.82 212.49 3.14 0.90 0.81
(-9%) (-6%) (-36%) (3%) (8%) (-27%) (2% (4%)

bm = 0.05
$1262 248.9 2.99 68.72 141.78 38.98 0.79 0.67
− − − − (-28%) (804%) (-10%) (-14%)

bm = 0.10
$1240 244.0 3.00 68.26 175.27 12.11 0.85 0.73
− − − − (-11%) (181%) (-3%) (-5%)

Performance metrics computed as the average over 30 demand sample paths. For each configuration, we use the
performance of the 1VMC-SOR policy to report the percentage change in each metric relative to the baseline. Only

if the difference in performance is significant at 5%, then we report the relative percent change below the metric.

5. Conclusion and Directions for Future Work

In this paper, we study the use of discounted rides as a mechanism to directly incentivize

users to park vehicles at charging stations in order to keep the fleet of vehicles adequately
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Table 4 Experiment Parameter Sensitivity: Sensitivity of SOR Size for Various Network Configurations.

Correlation between SOR Length and:

Instance
Parameter
Changes

Mean
Length

Arrival
Probability

Distance to Closest
Charging Station

Expected Battery
Consumption w. w= 1

1 Baseline 37.97 -0.29 -0.27 0.62
2 cm = $5 22.32 -0.26 -0.26 0.49
3 cm = $50 42.59 -0.26 -0.26 0.53
4 bm = 0.05 33.53 -0.32 -0.18 0.70
5 bm = 0.10 33.53 -0.32 -0.18 0.70
6 pm = 5% 37.50 -0.29 -0.21 0.66
7 pm = 10% 37.79 -0.29 -0.26 0.64
8 DM= 0.5 26.30 -0.07 -0.43 0.14
9 DM= 20 53.40 -0.34 -0.09 0.80

The mean length of the SOR policy is computed as the average length over all the regions in the network.

Table 5 Experiment Demand Sensitivity: Impact of Varying Ride Demand (λi and pij).

Revenue
Relative to FB

pij
C U F

λi

C 74% 73% 70%
U 76% 74% 69%
F 84% 82% 75%

Moves
Relative to FB

pij
C U F

λi

C 98% 83% 58%
U 104% 85% 62%
F 243% 182% 90%

Unmet Demand | Vehicle
Relative to FB

pij
C U F

λi

C 110% 110% 116%
U 106% 107% 114%
F 101% 101% 102%

Unmet Demand | Battery
Relative to FB

pij
C U F

λi

C 39% 33% 25%
U 40% 36% 26%
F 69% 58% 37%

Average Disutility per Offer
Relative to FB

pij
C U F

λi

C 13.5% 13.5% 13.6%
U 13.5% 13.4% 13.7%
F 13.5% 13.5% 16.3%

Rides Fulfilled
Relative to FB

pij
C U F

λi

C 97% 98% 95%
U 98% 97% 93%
F 100% 100% 97%

Mean SOR Length

pij
C U F

λi

C 38.40 40.70 44.67
U 36.14 39.69 43.47
F 28.38 31.46 39.52

Correlation: SOR Length
& Arrival Probability (λi)

pij
C U F

λi

C -0.20 -0.10 0.05
U -0.35 -0.33 -0.23
F -0.28 -0.39 -0.49

Correlation: SOR Length
& Distance to Closest

Charging Station (dizi)
pij

C U F

λi

C -0.12 -0.22 -0.33
U 0.04 -0.24 -0.36
F -0.16 -0.23 -0.34

The arrival probability (λi) and the transition probabilities (pij) vary from close (C) to charging stations,

uniform (U) across the entire service area, and far (F) from charging stations. We use baseline parameters values.
The optimal 1VMC-SOR policy is obtained by solving Single Threshold .

charged. We focus on developing simple free-ride offer policies, which we refer to as single-

offer range policies. These policies specify a critical battery levels for each region i, which

serve as cut-off points for whether or a not a free ride should be offered. Not only do

we provide a formulation to find the optimal single-offer range policy for certain settings,

but we also demonstrate that such policies can be quite effective in terms of their ability
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to generate revenue, keep the fleet of vehicles charged and keep the user-base happy. We

show this latter point through an extensive discrete event simulation that is seeded with

historical ride data from a real EVSS. While offering price incentives to users to change

their destination to charging stations seems like a good idea, our results show that Fine-

Based policies are also effective, and the advantages between the two types of policies

depend on the system’s objectives and features of the network and user base.

There are many interesting directions for future work with regards to dockless EVSS

systems. Since most mobility sharing systems experience travel demands varying by hours

over the day, one potential extension of our work involves incorporating time-varying ride

patterns. We attempted to extend our infinite horizon framework to a time-varying setting

where we solved for an time-specific SOR policy for several time windows throughout the

day. Depending on the time block of an arriving customer, the corresponding time-specific

policy is used to determine if a free ride should be offered. Unfortunately, this time-block

policy did not perform as well as the free-ride policy generated from using the ride data

from the entire day. Another direction for future work within the multiple-vehicle frame-

work could consider a setting in which the EVSS consists of multiple vehicle types. In our

case, we assume that all vehicles are homogeneous, but many VSSs have several vehicle

types (i.e. sedan and SUV or e-scooters and e-bikes) whose functionalities are all different.

On the behavioral revenue management side, there are several fascinating directions. For

instance, in a ride-sharing setting, Cohen et al. (2018) compare the effectiveness of imme-

diate ride discounts versus future ride credit. In the same spirit, an interesting question is

examining the long-term implications that discounts and fines have on customer retention

and ridership in a dockless, EVSS.
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Appendix A: Notation Table

Table A.1 Summary of notation.

Parameter Description

R Set of regions in the network, where i, j denote arbitrary locations in R.
Z ⊂R Regions with charging stations, where z denotes an arbitrary charging station in Z.

R(i,w)⊆R Subset of regions that can be reached from location i∈R with battery w ∈W. Defined
as R(i,w) = {j ∈R :w≥ bij}.

W Set of feasible battery levels. Values are equally separated by δ, so W = [0, δ,2δ, ...,1].
δ ∈ [0,1] Battery increment used in W.
σ ∈ [0,1] Percentage of the full fare that the firm decides to offer. σ = 1 corresponds to no

discount and σ= 0 corresponds to a 100%, or free-ride, discount.
n Number of vehicles in the network.
m Number of charging stations in the network, so |Z|=m.

bm ∈ [0,1] Battery threshold for manual move. If a parked vehicle has a battery level w < bm,
then this vehicle is eligible for manual repositioning.

cm ∈ [0,1] Cost of a manual repositioning move.
pm ∈ [0,1] Probability that a manual repositioning move occurs.
tm ∈ [0,1] Mean number of periods for a manual move to be completed.
γ ∈W Battery recharge rate.
b̄i ∈W The minimum battery required to reach the nearest charging station from i. Defined

as b̄i = minz∈Z{biz}.
zi ∈Z Closest charging station to region i∈R.
λi ∈ [0,1] Probability of seeing a request for a vehicle in region i∈R.
pij ∈ [0,1] Probability of a ride starting at region i∈R and ending at j ∈R.
bij ∈W Battery consumption of a ride starting at region i∈R and ending at j ∈R.
dij ∈R+ Distance between regions i, j ∈ R. We note that dii = 0 and the distance between

regions does not depend on the direction, so dij = dji.
fij ∈R++ Revenue or fare of a ride starting at region i∈R and ending at i∈R.
tij ∈Z++ Duration of a ride starting at region i∈R and ending at j ∈R.
β ∈ (0,1) Discount factor used in the dynamic programs.
βij ∈ (0,1) Adjusted discount factor of a ride starting at region i∈R and ending at j ∈R. Defined

as βij = βtij .
u(d, f) The utility gained on a ride where d is the distance between the vehicle drop-off

destination and desired destination, and f is the fare for the ride.
P(Acceptijz) The probability a customer accepts the free-ride from i to z instead of paying the full

fare to go to j, the desired destination. Defined as P
[
u(dzj ,0)≥ u(0, fij)

]
.

DM Dollar-to-Mile ratio captures the amount of money a user would take in exchange for
walking 1 mile. The units are $

Mile
.

Appendix B: 1VMC Dynamic Program for an Arbitrary Discount

The state of a vehicle, (i,w), can be categorized into 6 cases, which we outline in Figure A.1 and Table A.2.

Based on each case, the value function takes a different form and in three of the cases the system operator

needs to decide whether or not to offer a discounted ride. For the 1VMC network with a general 1 − σ

discount for σ ∈ [0,1], the value function for each case is provided in equations (i)-(vi).

V (i,w) = max
σ∈[0,1]

{
λi

∑
j∈R(i,w)

pij ·
(
P(Declineσijzj ) ·

(
fij +βijV (j,w− bij)

)
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Figure A.1 Description of Different Cases for State (i,w) in 1VMC.

Note. For a vehicle at (i,w), there are six cases depending on if the vehicle is at a charging station (i.e., i 6∈ Z), if the

vehicle can reach a charging station (i.e., w≥ b̄i), and if the vehicle is eligible for a manual move (i.e., w≥ bm).

Table A.2 Description of Six Cases for State (i,w) in 1VMC

Case Region
Charging Station

Accessible
Manual Move

Eligible
Description of Case

(i)

i 6∈ Z
w≥ b̄i

w≥ bm Do not move and potentially offer.
(ii) w< bm Move and potentially offer.
(iii)

w< b̄i
w≥ bm Do not move and do not offer.

(iv) w< bm Move and do not offer.
(v)

i∈Z w≥ b̄i - Battery replenishes and potentially offer.
(vi) w< b̄i - Battery replenishes and do not offer.

This table maps a vehicle’s state (i,w) to one of six cases in the 1VMC dynamic program. The first four rows
are for vehicles not in charging stations stations and the last two rows are for vehicles in charging stations. The

column “Charging Station Accesible” contains w ≥ b̄i if a vehicle at (i,w) can reach a charging station. The

column “Manual Move Eligible” contains w< bm if a vehicle at (i,w) is eligible to be manually repositioned.

+P(Acceptσijzj ) ·
(
σfij +βizjV (zj ,w− bizj )

))}
+
(

1−λi
∑

j∈R(i,w)

pij
)
·βV (i,w) (i)

V (i,w) =pm ·
(
− cm +βmV (zi,w)

)
+ (1− pm)

·

(
max
σ∈[0,1]

{
λi

∑
j∈R(i,w)

pij ·
(
P(Declineσijzj ) ·

(
fij +βijV (j,w− bij)

)
+P(Acceptσijzj ) ·

(
σfij +βizjV (zj ,w− bizj )

))}
+
(

1−λi
∑

j∈R(i,w)

pij
)
·βV (i,w)

)
(ii)

V (i,w) =λi
∑

j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij
)
·βV (i,w) (iii)

V (i,w) =pm · (−cm +βmV (zi,w)) + (1− pm)·(
λi

∑
j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij
)
·βV (i,w)

)
(iv)

V (i,w) = max
σ∈[0,1]

{
λi

∑
j∈R(i,w)

pij ·
(
P(Declineσijzj ) ·

(
fij +βijV (j,w− bij)

)
+P(Acceptσijzj ) ·

(
σfij +βizjV (zj ,w− bizj )

))}
+
(

1−λi
∑

j∈R(i,w)

pij
)
·βV (i,min{w+ γ,1}) (v)

V (i,w) =λi
∑

j∈R(i,w)

pij ·
(
fij +βijV (j,w− bij)

)
+
(

1−λi
∑

j∈R(i,w)

pij
)
·βV (i,min{w+ γ,1}) (vi)
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Appendix A: Example More Battery Being Less Lucrative

The following example illustrates that more battery can be less lucrative. Let us consider a network with

three regions and one charging station, R= {1,2,3} and Z = {2}, respectively. The arrival and transition

probabilities, revenues, battery consumption, and manual repositioning parameters are defined in Table

OA.1. Furthermore, we assume that users accept a free ride half of the time. We plot the optimal value

function at region #1 in Figure OA.1 for two values of bm, the battery threshold required for a vehicle to

be manually repositioned. When bm = 50%, more battery is always lucrative, however when bm = 25%, more

battery can be less lucrative (w≤ 25%).

Table OA.1 Parameters for Example where More Battery is Less Lucrative

pij 1 2 3

1 1/3 1/3 1/3
2 1/3 1/3 1/3
3 1/3 1/3 1/3

fij 1 2 3

1 $1 $2 $2
2 $2 $1 $2
3 $2 $2 $1

bij 1 2 3

1 25% 50% 75%
2 50% 25% 50%
3 75% 50% 25%

λ1 1/3
λ2 1/3
λ3 1/3
pm 0.5
bm 25%
cm $1

Figure OA.1 More Battery is Not Always Lucrative.

1
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Appendix B: Proofs

Proof of Proposition 1. For an arbitrary region i, we show that there exist threshold battery levels wi1

and wi2 such that x̃o(i,w) = 1 if wi1 ≤w≤wi2 and x̃o(i,w) = 0 otherwise. Based on our construction of π̃, this

is equivalent to showing that π̃ ∈ΠSOR. We note that if
∑

w∈W x̃
o(i,w) = 0, then the result holds trivially.

Hence for the remainder of the proof, we assume that
∑

w∈W x̃
o(i,w)≥ 1. First, we consider the case in which

x̃o(i, b̄i) = 1 and so we know that
∑

w∈W ỹ(i,w) = 0 by constraint (5). In this case, we claim that π̃ is the

single-offer range policy where wi1 = b̄i and wi2 = max{w ∈W : x̃o(i,w) = 1}. To see this, note that constraint

(4) together with the definition of wi2 ensure that both x̃o(i,w) = 1 if wi1 ≤w≤wi2 and x̃o(i,w) = 0 if w>wi2.

Next, we consider the case in which x̃o(i, b̄i) = 0. Here, we see that constraint (5) ensures that there must

exists w′ ∈W such that ỹ(i,w′) = 1. We claim that in this case, π̃ is the single-offer range policy with wi1 =w′

and wi2 = max{w ∈W : x̃o(i,w) = 1}. To show this claim, we first note that we must have x̃o(i,w) = 0 for

b̄i ≤ w < w′ due to constraint (4) and the assumption that x̃o(i, b̄i) = 0 and the fact that ỹ(i,w) = 0 for a

fixed region i and any w 6=w′. Finally, using the same argument as above, we can show that x̃o(i,w) = 1 if

wi1 ≤w≤wi2 and x̃o(i,w) = 0 if w>wi2. �

Proof of Theorem 1. We focus on the case where w≥max{b̄i, bm} for the definition of the value functions,

which is the most common case, and note that the proof goes through in the case when b̄i ≤ w < bm.

We assume that M ≥max{Z̃,maxπ∈ΠSOR
Z(π)}. First, we show that Z̃ ≤maxπ∈ΠSOR

Z(π). Let Ṽ (i,w) be

the optimal V (·) decision variables in Single Threshold, and abusing notation slightly, we let Ṽ o(i,w) and

Ṽ no(i,w) denote the value of V o(i,w) and V no(i,w) at optimality. We establish that Z̃ ≤maxπ∈ΠSOR
Z(π)

by showing that Ṽ (i,w) is a feasible solution to LP Policy when π = π̃. First, we note that at optimality

Ṽ (i,w) = min{Ṽ o(i,w) +Mx̃no(i,w), Ṽ no(i,w) +Mx̃o(i,w)} for i ∈R\Z,w≥max{bm, b̄i}. Without loss of

generality, we assume x̃o(i,w) = 1 and x̃no(i,w) = 0, since the other case in symmetric. Then, we have

Ṽ (i,w) = min{Ṽ o(i,w), Ṽ no(i,w) +M}= Ṽ o(i,w) = 1(i,w)∈Sπ̃ Ṽ
o(i,w) +1(i,w)/∈Sπ̃ Ṽ

no(i,w).

The second equality follows because M ≥ Z̃ ≥ Ṽ (i,w) = Ṽ o(i,w) and third equality follows by definition of

Sπ̃. The other constraints are trivially satisfied and hence we get that Ṽ (i,w) is feasible to LP Policy when

π= π̃ and so Z̃ =
∑

i∈R

∑
w∈W Ṽ (i,w)≤maxπ∈ΠSOR

Z(π) since π̃ ∈ΠSOR by Proposition 1.

Next, we show that Z̃ ≥ maxπ∈ΠSOR
Z(π). Let π∗SOR = arg maxπ∈ΠSOR

Z(π) be the optimal single-offer

range free-ride policy and let Vπ(i,w) be the optimal decision variables to LP Policy when π= π∗SOR. Further,

for each region i, assume that wi∗1 and wi∗2 give the critical battery level threshold under π∗SOR. To show the

desired result, we construct a feasible solution V̂ (i,w), x̂o(i,w), x̂no(i,w), ŷ(i,w) for each i∈R and w ∈W to

Single Threshold that achieves an objective of Z(π∗SOR). First, we set x̂o(i,w) = 1 if (i,w)∈ Sπ∗
SOR

, x̂o(i,w) = 0

if (i,w) /∈ Sπ∗
SOR

. We then set ŷ(i,w) = 1 if w= max{w> b̄i : (i,w)∈ Sπ∗
SOR
} and ŷ(i,w) = 0 if w 6= max{w>

b̄i : (i,w) ∈ Sπ∗
SOR
}. Finally, we set V̂ (i,w) = Vπ(i,w) and let V̂ o(i,w) and V̂ no(i,w) be the resulting values

of V o(i,w) and V no(i,w). First, we show that this solution is feasible in Single Threshold. We trivially get

that x̂o(i,w) + x̂no(i,w) = 1 and that constraint (5) is satisfied by construction. To show that constraint

(4) is satisfied note that we have x̂o(i,w− δ) = x̂o(i,w) if w /∈ {wi∗1 ,wi∗2 − δ}. If w = wi∗1 , then we get that
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x̂o(i,w)− y(i,w) = 0≤ x̂o(i,w− δ) and if w=wi∗2 − δ then we get that xo(i,w− δ) = 1 and so the constraint

must be satisfied. Hence it remains to show that V̂ (i,w)≤min{V̂ o(i,w)+Mx̂no(i,w), V̂ no(i,w)+Mx̂o(i,w)}

when w ≥max{bm, b̄i}. We again assume without loss of generality that x̂o(i,w) = 1 and x̂no(i,w) = 0. We

have that

V̂ (i,w) = Vπ(i,w) = V̂ o(i,w)≤min{V̂ o(i,w), V̂ no(i,w) +M}

= min{V̂ o(i,w) +Mx̂no(i,w), V̂ no(i,w) +Mx̂o(i,w)},

where the second equality follows by definition of π∗SOR and the fact that we assumed that x̂o(i,w) = 1. The

third equality follows because M ≥ Z(π∗SOR) ≥ Vπ(i,w) = V̂ o(i,w). Finally note that this solution attains

the desired objective value of
∑

i∈R

∑
w∈W V̂ (i,w) = Z(π∗SOR) and so we have established that Z(π̃) = Z̃ =

Z(π∗SOR) as desired. �

Appendix C: Description of Discrete Event Simulation

In this section we provide additional details of our simulation and experiments to complement the description

provided in Section 4 of the paper. First we describe how we use the historical data to estimate trip param-

eters, such as duration, battery consumption, and fare, between regions in the network. Then we describe

how to solve for the optimal discount policies. And finally, we describe the dynamics of the simulation, which

includes how the system is seeded, how trips are generated, and how manual moves take place.

C.1. Estimating Parameters

Trip Features. Using all trips in the data, we run three linear regressions to estimate a trip’s mileage (m),

duration (t), and battery consumption (b). We index trips from k= 1, ...,K and in all regressions we use the

geocoordinates of the trip’s origin and destination, respectively (ilat
k , ilong

k ) and (jlat
k , jlong

k ), and the distance

between the two locations, dikjk . The output to the regression in Eqs. (1)-(3) is available in Table OA.2.

mk = β0 +βilat · i
lat
k +βilong · ilong

k +βjlat · j
lat
k +βjlong · j

long
k +βd · dikjk + εk where εk ∼N (0, σm) (1)

tk = β0 +βilat · i
lat
k +βilong · ilong

k +βjlat · j
lat
k +βjlong · j

long
k +βd · dikjk +mk + εk where εk ∼N (0, σt) (2)

bk = β0 +βilat · i
lat
k +βilong · ilong

k +βjlat · j
lat
k +βjlong · j

long
k +βd · dikjk +mk + tk + εk where εk ∼N (0, σb) (3)

Table OA.2 Regression Output.

Dependent
Variable

β0 ilat ilong jlat jlong dij

True
Distance
(Miles)

True
Duration
(Minutes)

R2 σ: Standard Error
of Regression

m -1089.98 -0.79 -3.77 -1.81 -5.96 0.48 - - 0.08 2.07
t 11309.20 -9.76 30.07 16.60 64.31 -8.76 11.21 - 0.55 21.30
b -2529.54 15.31 23.38 5.49 -37.63 -0.23 4.39 0.01 0.63 7.53

We use the above regressions to generate the specific features of a ride from i to j in the simulation. Thus,

using Eqs. (1)-(3) and the coefficients detailed in Table OA.2, we compute each trip’s predicted mileage

(m̂ij), predicted duration (t̂ij), and predicted battery consumption (b̂ij). Using t̂ij , we compute the predicted

fare fij = $1 + $0.15 · t̂ij . Since the units of t̂ij are in minutes, the value must be converted to periods (recall

that 1 period equals 2.66 min) to compute the adjusted discount rate βij .
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Users Utility. To compute the utility gained from a trip, we assume the utility function u(d, f) takes

the form u(d, f) =−αd · d−αf · f . With this structure, the utility is decreasing in both distance and price

and the maximum utility is 0. We assume αd ∼ U(0,DM) and αf ∼ U(0,1), and use DM= $5/mile as the

baseline value. This value is equivalent to $15 per hour, which will be in the minimum wage in 2023 in

California, where the EVSS collaborator is based, when we assume people walk at 3 miles per hour. Under

this utility model, the probability of accepting a free ride is given in Eq. (4). To see how P
(
Acceptijzj )

fluctuates relative to the willingness to pay and walk, in Table OA.3 we show the average value over all

feasible origin-destination routes in historical ride data.

P
(
Acceptijzj

)
=


fij
dzjj
· 1

2·DM ,
fij
dzjj
≤DM

1− DM
2
·
dzjj

fij
,otherwise

(4)

Table OA.3 Average Probability of Accepting a Free-Ride Offer for Various
Dollar-to-Mile (DM) Values.

DM ($/Mile) 0.5 1 2 5 10 20

Avg. P
(
Acceptijzj

)
94.6% 91.9% 86.6% 72.5% 58.9% 49.3%

C.2. Computing Policies

Using the sets R,Z, and W, and the parameters λi, pij , t̂ij , b̂ij , fij , βij , β,P(Acceptijz), cm, bm, pm, tm, and γ,

we solve for the optimal 1VMC-SOR policy, by solving the MIP described in Single Threshold, and we solve

for the optimal 1VMC-50 policy via linear programming. We found that value iteration and policy iteration

did not scale well to large, realistic instances. Note that policies need to be recomputed anytime any of these

parameters change. We provide a description of how we compute the NVMC-SALP policy in Appendix F.

C.3. Generating Trips in Simulation

A new trip is generated as follows,

• Sample inter-arrival time τ from the Beta Prime(α= 0.92, β = 4.07, location = 0.01, and scale = 8.86)

distribution. We set the ride request’s arrival time to T + τ , where T is the simulation’s current time.

• Sample i, the trip’s origin region, from the discrete distribution of λi.

• Given the trip’s origin region i, sample the destination region j from the discrete distribution of pij .

• Given i and j, we randomly generate the ride features (we use the tilde above m,t, and b to denote the

trip specific features) by using the regression output in Table OA.2 as follows:

— We sample a random error ε∼N (0, σm). Using the predicted mileage value m̂ij computed using the

regression in Eq. (1) and the corresponding coefficients in Table OA.2, we set m̃ij = m̂ij + ε.

— Taking m̃ij to be the trip’s true mileage, we use the regression in Eq. (2) and the corresponding

coefficients in Table OA.2 to compute the trip’s duration t̃ij . In order to ensure that the trip’s duration and

mileage are related, we do not sample an error term when generating the trip’s duration.

— Taking m̃ij and t̃ij to be respectively the trip’s true mileage and duration, we use the regression

in Eq. (3) and the coefficients in Table OA.2 to compute the trip’s battery consumption b̃ij . Again, we

do not sample an error term when generating b̃ij to ensure that the trip’s mileage, duration, and battery

consumption are correlated.
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— Finally, using t̃ij , the duration of the trip in minutes, we compute the fare for the trip fij = $1 +

$0.15 · t̃ij . This corresponds to a base fare of $1 per trip plus a per-minute charge of $0.15/minute.

• To generate the customer’s willingness to walk and pay, we sample αd ∼U(0,DM), αf ∼U(0,1).

Therefore, a new trip request is characterized by the following information: (T + τ, i, j, t̃ij , b̃ij , fij , αd, αf ).

We note that we generate ride requests dynamically in the simulation, that is, at any time T , we can generate

a stream of future demand requests. This approach is in contrast to generating all demand requests in

advance, which turned out to be much more computationally expensive.

C.4. Simulation Dynamics

Initializing System. We track time in seconds and the simulation starts at T = 0. We randomly assign

n= 300, fully-charged vehicles, to regions according to λi. We store the location and battery of each vehicle

in a System State (SS) table. We also track in SS whether or not a vehicle is busy on a ride or being manually

repositioned. Thus, vehicles status is either idle or busy. We seed the system with a single ride based on

the procedure described in Appendix C.3, and store the request arrival time and the corresponding ride

information in a Pending Events (PE) list. In PE we also keep track of in-progress rides and manual moves.

We denote Time Event as the time when the pending event is scheduled to occur in the simulation, that

is, the request arrival time for a new trip, the completion time for an in-progress ride, and the completion

time for an in-progress manual move. While each policy we test runs in its own simulation and has its own

SS table and PE list, they all start under the same configuration and see the same stream of demand.

Run Simulation. While T ≤ 100 days, we sequentially perform the following six steps:

Step 1 Find “next event” (NE). The NE is the event in the PE list with the minimum Time Event.

Thus, we sort the PE list in ascending order of Time Event and update T ′← T and T ←min{Time Event},

where T ′ is the time of the previous event. If NE occurs on the next day, then we record the status of the

network and the corresponding performance measures that we track. Before we update the system based on

the NE type (Steps 4-6), we update the battery of idle vehicles at charging stations (Step 2) and potentially

schedule a manual move for a vehicle with remaining battery below bm (Step 3).

Step 2 Update battery. For idle vehicles in table SS that are at charging stations, we update the battery

level at the rate of corresponding to 5 hours for a full charge for a time interval corresponding to T −T ′.

Step 3 Schedule manual move of vehicles. We check SS for idle vehicles not parked at charging stations

that have remaining battery below the move threshold bm. If there are any move-eligible vehicles, then a

crew member will arrive with probability pm. If there is more than one move-eligible vehicle, then we select

one to move at random. The move is scheduled as an in-progress move on the PE list with Time Event set

to T + t′m, where t′m is drawn from a truncated normal distribution with a mean of 4 hours and standard

deviation of 30 minutes. The selected vehicle will be moved to the nearest charging station at Time Event.

The SS table is updated so the selected vehicle is shown as busy until the repositioning is completed.

Step 4 The NE is a new request for a ride.

(a) Check for available vehicles. We search the SS table for idle vehicles at the arrival region and in the

regions immediately around the arrival region. If there are no available vehicles, we track the unmet demand
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due to not having a vehicle present. If there are vehicles, but they do not have enough battery to fulfill the

ride, we track the unmet demand due to not having enough battery. Then we go to step (c).

If there are available, idle vehicles at the arrival region, or in the neighborhood of the arrival region, that

have enough battery to complete the ride, then we assume users select the highest charged vehicle. We update

the status of the vehicle in the SS table to be busy.

(b) Users’ choice of drop-off location. Regardless of the policy in place, at the time of renting the vehicle,

users weigh the utility of ending the ride at their intended destination with the utility of ending the ride at

the charging station closest to their intended destination. Based on this decision, we schedule an in-progress

ride on the PE list with a completion time and end destination of either Time Event = T + t̃ij and j or

T + t̃izj and zj . We make several distinctions in how customers choose their end destination depending on

the policy being tested in the simulation:

Fine-Based policy: We note that the user only has to decide on their end destination if (i) their end

destination is not at a charging station and (ii) the remaining battery at the end of the ride will be less

than bm, the manual move threshold. To decide on the end destination, the user computes her utilities

u(0, fij + fine) and u(dzjj , fij) using αd, αf , the customer’s willingness to walk and pay parameters. If

u(0, fij +fine)≤ u(dzjj , fij), the user chooses zj as the end destination and the system accrues fij in revenue.

Otherwise, the end destination is the user’s intended destination, and the system collects fij in revenue plus

the fine. However, we do not count the fine as revenue since this money will be used to subsidize the cost of

a manual move. Regardless of what the user ultimately decides, we track that the customer had a decision

to make, whether the customer paid the fine or not, and the utility gained in the chosen action.

Free-ride policy: First we note that the user only has a decision to make if the system actually offers a free

ride to a charging station. The system does this by checking if, given the vehicle’s location and the vehicle’s

remaining battery, offering is the optimal action. In other words, the operator offers a free ride if the state

describing the location and remaining battery of the vehicles to be rented (i,w)∈ Sπ̃. If a free ride is offered,

then the user computes her utilities u(fij ,0) and u(0, dzjj) using αd, αf , the customer’s willingness to walk

and pay parameters. If u(fij ,0) ≤ u(0, dzjj), the customer chooses to accept the free ride to the charging

station zj and we update the ride’s end destination to zj and the fare of the ride to $0, otherwise we leave

the ride information the same. We track that a free ride was offered, whether the customer accepted, and the

utility gained in the chosen action. We note that under the 1VMC-50 policy, users also consider the utility

of a 50% discounted-ride option by computing u(0.5 · fij , dzjj). If this option results in the highest utility,

then we update the ride’s end destination to zj and the fare paid to 0.5 · fij .
(c) Update PE list. First, we remove this arrival request event from the PE list. Next, we add a new

arrival request onto the PE list per the process described in Appendix C.3.

Step 5 The NE is the completion of an in-progress ride:

(a) Update the SS table with the vehicle’s region, remaining battery, and availability (to idle).

(b) Update PE list. We remove this in-progress ride event from the PE list. We track that a ride was

completed and the fare collected by the system.

Step 6 The NE is the completion of an in-progress manual move. We update the SS table with the

vehicle’s new destination, which is a charging station, and allow the vehicle to be eligible for rides. We track

that a manual move occurred in the metrics.
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Appendix D: Experiment Parameter Sensitivity Description and Results

In our second numerical experiment, Parameter Sensitivity, we use a synthetic demand scenario where λi =

pij = 1
|R| and generate 8 parameter instances of an EVSS network by varying four parameters: cm, bm, pm,

and DM. Table OA.4 describes each instance and the parameters values we vary from the baseline. For each

instance, we report the performance of four policies: the optimal free-ride, the single-offer range (1VMC-

SOR), the policy where the system operator can choose between offering a free ride, a 50% discounted ride,

and not offering at all (1VMC-50), the Fine-Based policy (FB), and the “never offer” policy (NO).

Tables OA.5-OA.8 show how each policy performed across different metrics. The values presented have

been averaged over the last 30 days of the 100-day simulation. Since the network we consider is fairly large,

we use the first 70 days as a warm-up period. The results provide a comparative statics analysis of each

policy that shows the impact that increasing each of the 4 parameters has on several performance metrics.

Table OA.4 Description of Each Instance

Instance
Varying

Parameter
cm bm pm DM

1 Base $25 0.2 20% 5
2

cm
$5

0.2 20% 5
3 $50
4

bm $25
0.05

20% 5
5 0.10
6

pm $25 0.2
5%

5
7 10%
8 DM $25 0.2 20%

0.5
9 20

Appendix E: Experiment Demand Sensitivity Description and Results

In our third numerical experiment, Demand Sensitivity, we vary the demand parameters, λi and pij and fix

the operational parameters to their baseline values.We specifically allow the arrival and transition probabili-

ties to be either clustered close (C) to charging stations, spread uniformly (U) across the entire service area,

or spread far (F) from charging stations. In total, this gives us 9 synthetic demand scenarios.

Tables OA.9-OA.11 show how each policy performed in each of the nine demand scenarios across several

metrics. The values presented have been averaged over the last 30 days of the 100-day simulation. Since the

Table OA.5 Parameter Sensitivity Results: Daily Revenue and Rides Fulfilled

Average Daily Revenue ($) Rides Fulfilled per Day
# Vary 1VMC-SOR 1VMC-50 FB NO 1VMC-SOR 1VMC-50 FB NO
1 Base 1,185.43 1,210.28 1,527.35 1,570.66 231.55 217.60 232.12 238.52
2

cm
1,369.88 1,393.94 1,560.42 1,589.95 238.47 235.90 236.82 241.35

3 1,074.36 1,107.87 1,539.40 1,556.21 217.48 202.70 233.74 236.28
4

bm
1,261.70 1,273.01 966.02 984.79 248.89 230.11 160.77 163.49

5 1,240.02 1,262.29 1,766.93 1,777.30 244.04 227.79 277.56 278.65
6

pm
1,236.15 1,259.59 1,544.10 1,024.16 233.86 221.90 234.54 159.63

7 1,243.13 1,280.04 1,531.49 1,577.63 235.47 225.65 232.89 239.95
8 DM 1,267.01 1,358.02 1,519.21 1,538.23 232.54 227.37 230.60 233.23
9 1,194.91 1,236.19 1,548.15 1,558.30 237.87 235.14 234.81 236.33

 Electronic copy available at: https://ssrn.com/abstract=3391937 



Nyotta, Bravo, Feldman: Free Rides in Dockless, Electric Vehicle Sharing Systems
8

Table OA.6 Parameter Sensitivity Results: Unmet Demand per Day, due to Vehicle Availability and Insufficient Battery

Unmet Demand per Day
(Vehicle Availability)

Unmet Demand per Day
(Insufficient Battery)

Moves per Day

# Vary
1VMC
-SOR

1VMC
-50

FB NO
1VMC
-SOR

1VMC
-50

FB NO
1VMC
-SOR

1VMC
-50

FB NO

1 Base 196.8 212.8 189.4 183.2 4.3 2.3 11.1 11.0 4.84 2.95 4.90 47.79
2

cm
184.8 191.6 185.1 180.3 9.3 5.1 10.7 11.0 18.53 8.72 4.96 48.12

3 212.5 228.6 188.1 185.8 3.1 1.8 11.3 11.0 3.09 2.04 4.86 47.47
4

bm
141.8 175.8 39.1 39.6 39.0 23.7 229.8 226.6 2.99 1.70 13.16 27.85

5 175.3 196.9 84.3 84.3 12.1 6.8 69.6 68.5 3.00 1.64 11.99 48.21
6

pm
192.3 207.4 186.7 118.4 6.0 2.8 10.8 154.0 7.05 3.89 4.82 31.32

7 191.7 204.5 189.6 180.0 5.9 2.9 10.6 13.1 7.02 3.82 4.72 47.53
8 DM 191.2 197.7 189.6 187.2 7.5 6.2 11.1 10.9 8.50 5.59 3.58 47.18
9 189.3 192.2 186.2 184.6 4.7 4.4 10.8 10.9 12.05 11.11 9.67 47.40

Table OA.7 Parameter Sensitivity Results: Offers per Day, Accepts per Day, and Average Utility per Offer

Offers per Day Accepts Per Day Average Utilty per Offer

# Vary
1VMC
-SOR

1VMC
-50

FB NO
1VMC
-SOR

1VMC
-50

FB NO
1VMC
-SOR

1VMC
-50

FB NO

1 Base 63.70 85.78 51.10 0.00 53.88 62.75 46.20 0.00 -0.69 -2.09 -5.09 0.00
2

cm
40.21 72.50 51.83 0.00 33.51 51.35 46.87 0.00 -0.67 -2.19 -5.08 0.00

3 65.82 87.28 51.58 0.00 55.99 64.09 46.71 0.00 -0.69 -2.10 -5.06 0.00
4

bm
68.72 90.43 30.14 0.00 58.03 66.18 16.98 0.00 -0.69 -2.07 -7.84 0.00

5 68.26 89.82 52.41 0.00 57.49 65.95 40.42 0.00 -0.69 -2.07 -6.01 0.00
6

pm
57.73 81.61 50.84 0.00 48.41 59.08 45.99 0.00 -0.69 -2.12 -5.07 0.00

7 58.34 83.09 50.64 0.00 49.09 60.36 45.91 0.00 -0.68 -2.13 -5.05 0.00
8 DM 45.58 50.50 51.19 0.00 44.83 48.85 47.62 0.00 -0.08 -1.64 -4.49 0.00
9 102.01 154.05 51.58 0.00 54.00 63.36 41.88 0.00 -1.78 -2.49 -6.98 0.00

Table OA.8 Parameter Sensitivity Results: Average Charge of Fleet and Proportion of Fleet at
Charging Stations.

Average Battery
(w.o. vehicles at Charging Stations)

Proportion of Fleet
at Charging Stations

# Vary 1VMC-SOR 1VMC-50 FB NO 1VMC-SOR 1VMC-50 FB NO
1 Base 0.55 0.61 0.49 0.44 0.78 0.81 0.76 0.71
2

cm
0.48 0.54 0.49 0.44 0.74 0.76 0.75 0.71

3 0.58 0.64 0.48 0.44 0.81 0.84 0.75 0.72
4

bm
0.43 0.52 0.11 0.11 0.67 0.75 0.06 0.06

5 0.52 0.59 0.31 0.30 0.73 0.79 0.42 0.40
6

pm
0.53 0.60 0.49 0.09 0.76 0.80 0.75 0.11

7 0.53 0.60 0.49 0.44 0.76 0.79 0.75 0.70
8 DM 0.51 0.52 0.49 0.44 0.76 0.77 0.76 0.72
9 0.55 0.57 0.48 0.44 0.76 0.78 0.75 0.72

network we consider is fairly large, we use the first 70 days as a warm-up period. In this experiment we only

test the 1VMC-SOR policy since the previous experiment indicated the 1VMC-SOR and 1VMC-50 policy

perform similarly. We present the results to Demand Sensitivity in Tables OA.9-OA.11.
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Table OA.9 Demand Sensitivity Results: Daily Revenue and Rides Fulfilled

Average Daily Revenue ($) Rides Fulfilled per Day Moves per Day
λi pij 1VMC-SOR FB NO 1VMC-SOR FB NO 1VMC-SOR FB NO
C

C
1,333.34 1,791.93 1,802.19 264.69 271.90 273.08 5.68 5.82 56.96

U 1,168.79 1,529.69 1,552.73 227.61 232.16 235.48 5.07 4.88 47.24
F 721.29 855.68 859.14 129.39 129.73 130.18 5.92 2.43 24.28
C

U
1,286.68 1,753.53 1,760.54 259.93 266.63 267.64 4.75 5.74 56.05

U 1,142.77 1,535.49 1,563.68 226.35 233.10 237.25 4.17 4.88 47.70
F 696.30 845.88 857.82 127.98 128.33 130.17 4.20 2.31 24.18
C

F
1,229.33 1,767.13 1,797.49 254.52 268.56 273.03 3.40 5.91 56.94

U 1,081.99 1,560.62 1,552.91 219.61 237.22 235.93 3.00 4.86 47.58
F 398.11 534.27 550.09 79.53 82.05 84.32 2.18 2.43 19.28

Table OA.10 Demand Sensitivity Results: Unmet Demand per Day (due to Vehicle Availability and
Insufficient Battery) and Proportion of Fleet at Charging Stations

Unmet Demand per Day
(Vehicle Availability)

Unmet Demand per Day
(Insufficient Battery)

Proportion of Fleet
at Z

λi pij 1VMC-SOR FB NO 1VMC-SOR FB NO 1VMC-SOR FB NO
C

C
162.90 147.84 146.84 4.95 12.81 12.62 0.56 0.52 0.47

U 199.83 188.76 185.40 4.41 10.93 10.98 0.78 0.75 0.72
F 297.92 295.82 295.36 3.90 5.67 5.69 0.85 0.84 0.83
C

U
166.88 151.60 150.58 4.21 12.80 12.81 0.58 0.52 0.47

U 200.99 187.42 183.11 3.89 10.71 10.88 0.79 0.75 0.71
F 299.76 297.13 294.81 3.14 5.43 5.90 0.85 0.85 0.83
C

F
174.56 150.85 146.46 3.16 12.83 12.75 0.63 0.54 0.48

U 209.63 183.81 185.03 2.88 11.08 11.15 0.80 0.75 0.72
F 349.54 343.91 341.09 1.79 4.89 5.44 0.94 0.94 0.92

Table OA.11 Demand Sensitivity Results: Offers per Day, Accepts per Day, and Average
Utility per Offer

Offers per Day Accepts Per Day Average Utilty per Offer

λi pij
1VMC
-SOR

FB NO
1VMC
-SOR

FB NO
1VMC
-SOR

FB NO

C
C

76.66 62.54 0.00 64.81 56.73 0.00 -0.69 -5.06 0.00
U 62.18 51.16 0.00 52.38 46.29 0.00 -0.69 -5.08 0.00
F 25.80 26.27 0.00 21.59 23.83 0.00 -0.69 -5.09 0.00
C

U
78.68 61.41 0.00 66.37 55.66 0.00 -0.69 -5.07 0.00

U 64.43 51.37 0.00 54.52 46.49 0.00 -0.69 -5.11 0.00
F 28.28 25.95 0.00 23.80 23.63 0.00 -0.68 -5.05 0.00
C

F
82.14 61.51 0.00 69.38 55.61 0.00 -0.69 -5.09 0.00

U 67.21 52.33 0.00 56.92 47.46 0.00 -0.69 -5.04 0.00
F 23.99 19.25 0.00 19.06 16.80 0.00 -0.90 -5.50 0.00

Appendix F: NVMC-SALP: Description of Basis Functions and Weight Vector

In Table OA.12, we provide a description of the 10 basis functions we use for solving NVMC-SALP. Each

basis function captures valuable information about the system state and relates to the percentage of the fleet

that is available, the geographic dispersion of vehicles, and the average charge of the fleet.
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Next, we specify how we sample states and choose the constraint violation budget when solving the

NVMC-SALP. Solving the resulting linear program yields a vector of basis function weights, which we

provide in Table OA.12. It is these weights that we ultimately use to approximate the value function for

a multi-vehicle network. Under the NVMC-SALP policy in the simulation, we use the approximate value

functions to compute the expected discounted revenue of the NoOffer and Offer actions and choose the

revenue-maximizing decision. In this sense, we say that the policy is greedy with respect to the value function

approximations.

To generate the NVMC-SALP policy, we sample 500 states. In sampling a single state, we assume that

each of the n vehicles are randomly chosen to be either busy or idle. If a vehicle is idle, then it is located in

region i with probability λi. We assume that each vehicle has a remaining battery that is randomly drawn

from W. If a vehicle is busy, we sample the remaining time busy from a triangular distribution with mean

53 minutes and support [1 minutes, 180 minutes], the minimum and maximum trip duration in the data.

The violation budget restricts the expected constraint violation over all 500 states. Per the guidance of

Desai et al. (2012), we test several budget values ranging from 0 to 0.05 and then test the performance out

of sample and in the simulation. For extreme values, the resulting policy would offer too liberally, resulting

in a policy that forgoes too much revenue by offering free rides, and poor dispersion of vehicles since there

would be a glut of vehicles at charging stations.

Table OA.12 Description of Basis Functions used in NVMC-SALP and the Corresponding Weight Vectors.

Basis
Function

Description r

1 % of fleet on trips busy on rides -1846.83
2 % of busy vehicles available in 1 period 403.41
3 Mean fleet charge (available and non-available vehicles) 5219.46
4 Mean fleet charge (available and non-available vehicles) without vehicles

located in Z
-4679.12

5 % of available vehicles with |R(i,w)|= 0 -132.896
6 % of available vehicles with |R(i,w)|> 0,w < b̄i 408.34
7 % of available vehicles with |R(i,w)|> 0,w≥ b̄i 639.047
8 % of regions with available vehicles 1729.18
9 % of available vehicles located in Z 188.071
10 % of available vehicles eligible for a move (with battery < bm) 2863.42

Appendix G: Heatmap of Historical Arrival Probability.
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Figure OA.2 Heatmap of Historical Arrival Probability.
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