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Abstract

This paper presents a puzzle in the behavior of experimental sub-
jects in what we call common-probability auctions. In common-value
auctions, uncertainty is defined over values while, in common-probability
auctions, uncertainty is defined over probabilities. We find that in con-
trast to the substantial overbidding found in common-value auctions,
bidding in strategically equivalent common-probability auctions is con-
sistent with Nash-equilibrium. Additional treatments reveal that sub-
jects valued the auctioned items equally, implying that differences in
bidding behavior originate in the strategic uncertainty of the auction.
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1 Introduction

In the typical common-value auction a good is sold whose unknown value is
common to all bidders. Each bidder receives a signal about the value drawn
from a commonly known distribution and, based on the signal received,
makes a bid. Hence, in such auctions the value of the good being auctioned
is known only probabilistically – its value is uncertain. This way of modeling
auctions has been motivated, for instance, with the famous example of bid-
ding for oil rights among oil companies. In this paper we call such auctions
with common uncertainty about a value “common-value (CV)” auctions.

Models of common-value auctions generally assume that bidders adjust
their beliefs about the item’s expected value by updating the relevant range
of values. Another possibility that, so far in the experimental literature,
has been neglected is that bidders may also update their expectations by
revising probabilities. That is the case, for instance, if uncertainty stems
primarily from not knowing a probability rather than a value.

Suppose an investment project can either succeed or fail. In case of a
success the project’s value is precisely known, as well as in case of a failure.
For such investments with binary outcomes forming beliefs directly about
the success probability (rather than an expected value) seems natural, and
uncertainty may then be modeled in probabilities. Consider, for instance,
firms bidding for bonds issued by a corporation under financial stress. Here
the value of the bond at maturity is known but what is uncertain is the prob-
ability of default by the corporation. If investors do their due diligence they
will receive a signal about the common default risk drawn from a commonly
known distribution and, based on this probability signal, make a bid for
the bond. In such situations the uncertainty involved in the auction comes
from not knowing the common default risk or, more generally, a common
probability. We call such auctions “common-probability (CP)” auctions.

The question we ask in this paper is whether bidders process these
two types of auctions in the same way. In other words, do bidders when
facing two strategically equivalent common-value and common-probability
auctions submit identical bids or does the fact that one auction exhibits un-
certainty in the value domain while the other exhibits it in the probability
domain lead to differences in bidding behavior?

We answer this question by comparing the two cases with uncertainty
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in values versus probabilities only. Of course, most markets correspond to
a hybrid setting where both values and probabilities are uncertain. Yet,
we presume that especially in markets with binary outcomes agents may
naturally reflect about probabilities. Other examples include auctions for
non-performing loans where interested bidders inquire the underlying de-
fault risk before bidding. Similarly, in auctions for artwork with dubious
provenance collectors might have a precise assessment of the object’s value
provided its provenance is good, but the same object is worthless if it is
counterfeit or stolen. A major uncertainty arise then from not knowing the
odds of an immaculate provenance.

We design our experiments such that in both auction formats subjects
should form identical beliefs about the item’s expected value, but they revise
their beliefs for different reasons: uncertainty is resolved either in values or
in probabilities. Concretely, in the different treatments of our experiment
subjects face either CV or CP auctions and bid for equivalent lotteries. In
one case we present subjects with a random asset (a bond) whose (face)
value is known but whose default risk is not, while in the other we face
our subjects with a different asset (e.g. mineral rights) whose failure risk is
known but whose positive value is uncertain. These assets define lotteries
for which our subjects bid and are strategically equivalent in that bidders
should have identical expectations conditional on equivalent probability and
value signals.

What we find is interesting. First, in contrast to the prediction of the
risk-neutral Nash equilibrium theory, our subjects’ bids in CP auctions are
significantly lower than their bids in equivalent CV auctions. More specifi-
cally, while our subjects in CV auctions tend to bid above the naïve bidding
function (i.e., bidding the expected value given the signal), subjects in CP
auctions tend to bid below the even lower risk-neutral Nash equilibrium bid
function. As a result, while winning bidders overbid in both auctions, they
are less vulnerable to the winners’ curse in the CP than in the CV auction
due to their less aggressive bidding.

The difference between these two observed bidding behaviors may em-
anate from two distinct sources. First, subjects could possibly value the
lotteries with uncertain values differently than those with uncertain proba-
bilities. If so, differences in valuation could be captured by modeling indi-
vidual preferences with, for instance, different curvatures of utility functions
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or with non-expected utility theories. Second, perhaps strategic reasoning
differs across the two types of uncertainty.

To sort out whether the observed difference between CV and CP auctions
already originate in individual, subjective valuations, we ran an additional
experiment that dispenses with strategic incentives but leaves the lotteries
intact. In this experiment, subjects are asked to simply evaluate (price) the
same lotteries underlying our CV and CP auctions. It therefore provides us
with the opportunity to identify whether the difference in bids across our
auction formats derived from an underlying difficulty in lottery evaluation or
strategic behavior. We call these treatments the CVL and CPL treatments,
indicating that they involve lottery valuations as opposed to auctions.

We find that neither the perception nor the valuation of lotteries underlie
the wedge between the bids for CP and CV lotteries. Stripping the auction
game of its strategic elements suggests that the difference in bids observed
in our auctions does not come from our subjects evaluating the underlying
lotteries differently since, in a non-strategic setting, pricing of CV and CP
lotteries exhibit negligible differences. This finding points to an interaction
between the type of uncertainty our subjects face and its implications for
strategic uncertainty in the auctions. How exactly this interaction works
remains an intriguing puzzle worth studying in future research.

Our paper is connected to a number of different literatures. First, there
is the obvious connection to the literature on common-value auctions and
the extensive evidence on the winners’ curse (Kagel and Levin (1986); Kagel
et al. (1989); Charness and Levin (2009); Charness et al. (2014), i.e.; see also
Kagel and Levin (2002) for an excellent review). So far, the winner’s curse
effect was found to be connected to the information structure (Grosskopf
et al., 2018) and to decline only with sufficient experience in the laboratory
(Dyer et al., 1989; Kagel and Richard, 2001; Casari et al., 2007) or familiarity
with the task in the field (Harrison and List, 2008).1 Our contribution here
is to investigate the extent to which the winners’ curse is robust to the
introduction of common probabilities as opposed to common values.

The main drivers of the winner’s curse phenomenon are still subject to
a debate. The experimental literature provides mixed evidence on the im-

1Relatedly, overbidding in independent private value auctions has been attributed to
misperception of winning probabilities (to some extent) (Dorsey and Razzolini, 2003),
learning dynamics (feedback information) (Neugebauer and Selten, 2006) and imperfect
best response combined with risk aversion (Goeree et al., 2002).
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portance of emotions like the thrill of winning (Cox et al., 1992; Holt and
Sherman, 1994; Van Den Bos et al., 2008; Astor et al., 2013) or the fear
of losing (Delgado et al., 2008). Other explanations offered relate more
directly to strategic uncertainty. For instance, subjects possibly misiden-
tify the connection between other bidders’ actions and their private signals
(Eyster and Rabin, 2005; Crawford and Iriberri, 2007; Eyster, 2019). Al-
ternatively, subjects might have difficulties to perform the type of contin-
gent reasoning involved in equilibrium behavior. More precisely, in order
to avoid overbidding, subjects should bid conditional on their private signal
being the highest among all signals and should shave their bid downward.
Anticipating the informational content of winning is, however, a difficult
task. It requires a sophisticated level of contingent reasoning, that, in gen-
eral, most bidders struggle with. Besides common-value auctions difficulties
related to contingent reasoning extend to other settings like "Acquiring-
A-company" games (Bazerman and Samuelson, 1983; Charness and Levin,
2009; Martínez-Marquina et al., 2019, in an individual decision game vari-
ant), voting games (Esponda and Vespa, 2014) or asset markets (Carrillo
and Palfrey, 2011; Ngangoue and Weizsäcker, 2019). In all these settings,
uncertainty appears to be a crucial factor in impeding contingent reasoning
(Martínez-Marquina et al., 2019; Koch and Penczynski, 2018; Ngangoue and
Weizsäcker, 2019; Moser, 2019). Note, however, that none of the behavioral
explanations mentioned above hinge on a specific definition of uncertainty.
Our finding that uncertain probabilities mitigate the winner’s curse effect
points to the limits of the explanations offered and demands further inves-
tigations in this direction.

Finally, there is a growing literature in economics and psychology on how
people view lotteries with uncertain outcomes versus those with uncertain
probabilities. The main findings appear to be that when asked to choose
between lotteries involving uncertain outcomes or uncertain probabilities,
subjects appear to have no strong preference (Kuhn and Budescu, 1996;
González-Vallejo et al., 1996; Du and Budescu, 2005; Eliaz and Ortoleva,
2016) while when asked to price these same lotteries subjects appear to value
the uncertain outcome lotteries above those with uncertain probabilities
(Schoemaker, 1991; Du and Budescu, 2005). The results of our individual-
decision making experiment II are consistent with this existing literature on
one-person decision problems, but our auction setting brings attention to the
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finding that these small differences observed in individual decision-making
are substantially magnified in a strategic environment.

In this paper we will proceed as follows. In Section 2 we present our
experimental design. Section 3 presents the theory related to our experi-
ment and some hypotheses that we test in Section 4. Section 5 presents an
additional experiment that allows us to narrow down possible explanations.
We then discuss various decision models and their limitations in explaining
our results in Section 6. We finally conclude in Section 7.

2 Experimental Design

A total of 212 students from New York University participated in the exper-
iment, which consisted of two auction treatments, called CVA and CPA, and
two lottery treatments, called CVL and CPL.2 The two lottery treatments
CVL and CPL shed some light on how, in a non-strategic setting, bidders
value common-value versus common-probability objects. In this section,
however, we focus on presenting the two main auction treatments CVA and
CPA, and relegate the description of the lottery treatments CVL and CPL
to Section 5.

The auction treatments were conducted with approximately half of the
subjects, of which 55 were assigned to treatment CVA and 52 to the other
treatment CPA. Sessions for treatments CVA and CPA lasted approximately
90 minutes and subjects earned, on average, $23.78. The currency used in
the experiment were credits (C= ) with C= 6 corresponding to $1.

Both treatments had identical procedures. The experiment was comput-
erized with oTree (Chen et al., 2016) and consisted of two parts. Subjects
needed to pass a comprehension test before they could start the first part
of the experiment. In the first part, subjects participated in a set of first-
price auctions. In the second part, attitudes toward risk, compound risk
and ambiguity were elicited (see Appendix B for a detailed description). At
the end of the experiment, subjects learned their payoffs in the first and
second parts and answered a small, unincentivized questionnaire. In the
questionnaire, they provided some information on their socio-demographic
background, about their general approach to the auction game, and took

2The experiment was organized and recruited with the software hroot (Bock et al.,
2012).
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Frederick’s cognitive reflection test (Frederick, 2005).
In the first part of both treatments, subjects engaged in 8 different auc-

tion environments with 10 separate auctions each. At the beginning of
every auction, subjects were randomly matched into groups of four bidders
(i = 1, .., 4). Subjects in our auctions bid for lotteries described as either
common value (CV) or common probability (CP) lotteries. Both lotteries
are defined by two parameters v and p where v is a non-zero payoff of the
lottery and p is the percentage probability of receiving that payoff (with
(100− p) defining the percentage probability of receiving 0).3 In a CP lot-
tery the two outcomes {v, 0} are known but p is uncertain while in a CV
lottery, the opposite is true.4

We define by k that aspect of the lottery that is known to the bidder
(either k =: p in the CV auction or k =: v in the CP auction). Analogously,
we define ũ as the unknown component of the lottery, that is a random
variable uniformly drawn from an interval [γl, γh] (we use in the following
tildes to denote random variables). Hence, in the CV lottery where p is
known for sure, we define ũ =: ṽ ∈ [γl, γh] as the unknown aspect of the
lottery while in CP, where v is known, ũ = p̃ ∈ [γl, γh] is unknown.

For an example of a CP lottery consider a bond whose only risk is a
default risk but whose face value is known. Here the lottery defined by this
bond has a known value if no default occurs (v), but the default probability is
uncertain (p̃). On the other hand, a CV lottery corresponds to the standard
example of an oil field, whose economic value could be positive or zero. Here,
the non-zero value of this investment, ṽ, is unknown while the probability
of receiving it, p, is known.

We will now define the two main treatments in our experiment.

3We deliberately focus on binary zero-outcome lotteries to keep the cognitive costs of
computing expected values comparable.

4In auctions with affiliated values a prize in form of a lottery ticket may generate
some precautionary bidding if subjects have decreasing absolute risk aversion (Eso and
White, 2004; Kocher et al., 2015). In the instructions, we do not specifically frame the
lottery as an ex post risk but subjects probably perceive it that way. The observed bids
in our CV treatment are, if at all, too high and do not suggest that the lottery ticket
introduced a precautionary premium by lowering bids. Even though the general direction
of a corresponding DARA effect in common-value auctions is not clear, if bids exhibit
a precautionary premium, there are no apparent reasons for premia to drastically differ
across treatments.
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2.1 Common-Value Auctions

In a common-value auction subjects bid for CV lotteries, that pay off either
a positive value ṽ or zero credits. Subjects know p but have incomplete infor-
mation about the positive value ṽ, which is uniformly distributed between γl
and γh. In other words, they learn that ṽ ∼ U [γl, γh] with 0 < γl < γh < 100.

The computer determines the exact lottery by randomly drawing a value
ṽ. Subjects, however, do not observe this value at the moment of decision-
making. Instead, each of the four bidders in the auction receives a private
signal si independently from each other. The signal is informative about the
true lottery in that it is drawn from an interval that is symmetric around
the true value ṽ. More precisely, si ∼ U [ṽ− ε, ṽ+ ε], ε > 0. Signals become
more informative with a smaller support, that is with decreasing ε.

A Bayesian bidder would infer from observing a specific signal si that
the unknown value ṽ must lie within [si− ε; si + ε]. To help the subjects we
provide this information to them before they bid. Given this information,
subjects place a bid for the lottery at the bottom of the decision screen (see,
Figure 1 for an example).

Figure 1: Example of Decision Screen in Treatment CVA

At the end of an auction, the auction winner is determined and the true
lottery value, v is revealed. The lottery is played, the winner receives the
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lottery’s outcome, either 0 or v, and pays her bid. Except for their own
profit calculation, the feedback is the same for all bidders: Every bidder
observes the true lottery, the lottery outcome and the highest bid.5

2.2 Common-Probability Auctions

In a common-probability auction subjects bid for CP lotteries, that pay
off a positive value v with a percentage probability p̃ and zero with the
complementary probability (100 − p̃). Here, subjects know v (the known
component of the auction) but have incomplete information about p̃, the
probability of receiving v, which is uniformly distributed between γl and γh.
In other words, they learn that p̃ ∼ U [γl, γh] with 0 < γl < γh < 100.

The computer determines the exact lottery by randomly drawing a prob-
ability p̃ and each of the four bidders receives independently from each other
a private signal si. The signal is informative about the true probability in
that it is drawn from an interval that is symmetric around p̃. More precisely,
si ∼ U [p̃− ε, p̃+ ε], ε > 0, implying that p̃ lies within [si − ε; si + ε].

Subjects then place a bid for the lottery, whereupon the auction winner
is determined and the true probability, p̃, is revealed. The lottery is played,
the winner receives the lottery’s outcome, either 0 or v, and pays her bid.
Every bidder, here too, observes the true lottery, the lottery outcome and
the highest bid.

2.3 Parameters

In both treatments, subjects engage in 8 different auction environments and
within each environment they participated in 10 auctions. The lotteries
they bid for in each of the eight environments are defined by an n-tuple
(k,E[ũ], ε), where k is either the known probability p (presented to the
subjects as a percentage) or the known value v in the CP auction, E[ũ]
identifies the interval (of fixed length) from which the uncertain component
(either ṽ or p̃) is drawn, and ε defines the signal precision (1

3ε
2)−1. With

a 2x2x2 factorial design, we obtain 8 different parameter combinations by
varying these 3 components across 2 sets of parameters: k ∈ {40, 60}, E[ũ] ∈
{40, 60}, ε ∈ {4, 8}. Table 1 presents the exact 8 auction environments that
our subjects engaged in in either the CP or the CV treatments:

5The computer breaks ties between maximum bids randomly.
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Table 1: Lottery parameters

Lottery type k γ∗l γ∗h ε

1 60 30 90 4
2 40 10 70 4
3 40 30 90 4
4 60 10 70 4
5 60 30 90 8
6 40 10 70 8
7 40 30 90 8
8 60 10 70 8

∗:E[ũ] = 40 and E[ũ] = 60 correspond to
[γl, γh] = [10, 70] and [γl, γh] = [30, 90], respec-
tively.

Hence, the auctions presented to our subjects differ with respect to the
known value k (column 2), the support of the unknown parameter [γl, γh]
(columns 3 and 4), as well as the signal precision given by ε (column 5). In
choosing our parameters we faced a set of constraints, the most important of
which was to choose our values of k such that the CP and CV auctions were
strategically equivalent. As one can see in Table 1, our design allows us to
separately identify the sources of variation in our subjects’ bid functions as
we vary the different parameters of our auction in a ceteris paribus fashion.
For example, we are able to hold the known parameter k (probability or
value) constant and see how bids vary as we change the precision of the
signal distribution or alternatively, the support, [γl, γh], of the unknown
parameter ũ. Detecting differences in subjects’ bid functions as a result of
these ceteris paribus changes, if they exist, allows us to infer how subjects
process the different auctions they face.

Subjects then play 10 different auctions of each in these eight auction
environments. For each of these 10 auctions, the computer randomly selects
a true lottery on the basis of the environment’s parameters. More precisely,
the exact lottery (i.e., the true ṽ of the CV or p̃ of the CP lottery) and
the corresponding signals could differ from auction to auction within an
environment.
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3 Predictions Under Linear Expected Utility

In this section, we discuss the standard benchmarks under risk-neutral ex-
pected utility to which we will compare the results.

The CV and the CP auctions are strategically equivalent under the as-
sumption that bidders are risk-neutral expected utility maximizers. To make
the analogy more salient, we will henceforth use the letters k and ũ. In the
CV auction, the probability is known (k =: p) but the value is unknown
(ṽ =: ũ). To facilitate comparison between treatments we use percentage
values for p and write the ex-ante expected value of the CV lottery as:

100 · E[LCV ] = p · E(ṽ) = k · E(ũ).

In the CP auction the notation is reversed as the high value is now the
known parameter, v =: k, and the probability is unknown, p̃ =: ũ. Thus,
the ex ante expected value of the lottery is similarly denoted with

100 · E[LCP ] = v · E(p̃) = k · E(ũ).

There are three bidding functions to which we can compare empirical
bids:

Naive bid: 100 · E[L|si] = E[v|si] = k · si (1a)

Break-Even bid: 100 · E[L|si = max
∀j
{sj}] = k ·

(
si − ε

n− 1
n+ 1

)
, j = 1, ..., 4

(1b)

RNNE bid: 100 · b∗(si) = k ·
[
si − ε+ 2ε

n+ 1e
−( n2ε )[si−(γl+ε)]

]
(1c)

A naive bidder will bid the expected value of the lottery given her private
signal (see Equation 1a). A more sophisticated bidder will take into account
the winner’s curse effect and will bid the expected value assuming her signal
is the highest. She will therefore shave her bid downwards to make, on
average, zero profits with a break-even bid (see Equation 1b). A highly
sophisticated bidder will shave her bid even more assuming that, in a risk-
neutral Nash equilibrium (RNNE), every one else bids like her (see Equation
1c).6 The break-even and the RNNE bid do not differ by much; the analyses

6We constrain our attention to the signal domain (γl + ε < si < γh − ε) for which the
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will therefore mainly focus on the naive and the RNNE benchmark as these
represent the highest and the lowest bidding benchmark, respectively.

Because predictions vary with parameters and signals, aggregate data
will be mainly described with the measure of bid factors. Bid factors corre-
spond to deviations from the naive bidding function and allow us to focus
on statistics that are independent from the private signals. The bid factors
with respect to RNNE (Naive bid - RNNE bid) and Break-Even bid (Naive
bid - BE bid) are thus:

Break-Even bid factor: k · ε ·
(n− 1
n+ 1

)
(2)

RNNE bid factor: k ·
[
ε− 2ε

n+ 1e
−( n2ε )[si−(γl+ε)]

]
(3)

Thus, the computation of theoretical bid factors (with respect to both the
break-even and the RNNE bid) is identical across the two auction formats,
with the only difference being that in the CV auction k = p (in percentage
points) and in the CP auction k = v. Like in standard common-value auc-
tions, bid factors depend mainly on the signal’s precision (that is inversely
related to ε) and the market size n.7

Despite the strategic equivalence of our two auction formats, we might
very well suspect that behaviorally subjects treat them differently. Sub-
jects may find it more difficult to process uncertainty about probabilities
than uncertainty over values – a situation they face more frequently in their
every day lives. Whether this difference leads to a difference in bidding be-
havior or a different incidence in the winner’s curse across auction formats
is something we will let our data determine. We test two null behavioral
hypotheses.

Hypothesis 1 CV and CP auctions do not differ with respect to bids.

Hypothesis 2 There is no difference in the incidence of the winners’ curse
across our auction formats.

Hypothesis 2, which focuses on the subsample of winning bids, can be
valid even if Hypothesis 1 is rejected. In contrast to Hypothesis 1, however,

above risk-neutral Nash equilibrium (RNNE) bid function is defined.
7We chose n = 4 because in the experimental literature the winner’s curse has been

extensively studied in auctions with four bidders (see Kagel and Levin, 2002).
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Hypothesis 2 is not deduced from theoretical predictions but derives from
the observation that none of the existing behavioral explanations for the
winner’s curse effect hinge on a particular definition of uncertainty.

4 Results

In this section we investigate the two hypotheses stated above.8 We first
test whether the bidding behavior of subjects differ across our two auction
formats (which it does) and then investigate whether this difference has a
consequence for the incidence of the winner’s curse. We follow this up by
regression analyses to shed light on the source of these differences.

Result 1 Overall, bids significantly differ between the two auction formats:
Subjects generally overbid in common-value but bid according to Nash equi-
librium in common-probability auctions.

Hypothesis 1 of identical bidding behavior across auction formats is
clearly rejected. To study all auctions jointly, we consider bid factors that,
for a better visualization, we define here as the difference between the sub-
ject’s bid and the Nash equilibrium bid.9 Bid factors are then zero when
subjects bid according to Nash equilibrium but are positive (negative) when
they bid above (below) the Nash equilibrium bidding function. Figure (2)
shows the distribution of bid factors. Bid factors are significantly different
between the two treatments: They are predominantly positive in CVA (in-
dicating a fair amount of overbidding) but slightly negative albeit consistent
with Nash equilibrium in CPA. Appendix Table (A1) gives a more detailed
picture with the mean and median bid factors when the bid factor is com-
puted not only with respect to the RNNE bid but also with respect to the
break-even bid and the naive bid. In CVA, subjects bid more than the ex-
pected value of the lottery given their private signal. As mean and median

8Despite passing the comprehension test, some subjects chose dominated bids that
were above the highest possible value. We exclude 3 and 14 subjects in treatment CV and
CP on this basis, respectively. It is important to note that, first, removing those subjects
does not affect our main conclusion as we continue to observe a substantial difference in
bidding behavior with the entire sample. Second, this reduced sample is balanced in the
sense that across treatments the remaining subjects do not differ with respect to personal
characteristics measured at the end of the experiment (see Appendix Table A11.)

9Bid factors are usually defined as the difference between the naive bid and the subject’s
bid. We opted for a varying definition of bid factors that in our opinion offers an easier
interpretation and better visualization of the data.
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bids are above the naive bid, all three computations lead to, on average,
positive bid factors. In CPA, however, all three computations lead to, on
average, negative bid factors because subjects bid even slightly below the
RNNE bid. In sum, subjects significantly overbid for CV lotteries, but bid
according to Nash equilibrium for CP lotteries.
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Figure 2: Bid Factors (=bid - RNNE bid) in Treatments CVA (left) and
CPA (right)

The question remains whether this difference in bid factors affects the
incidence of the winner’s curse. Figure (3) shows the distribution of bid
factors in winning bids separately for treatments CVA and CPA. Winners
in both auctions fell prey to the winner’s curse as average winning bids
were significantly above the naive bid (see Appendix Table A2). Yet, the
data reject Hypothesis 2: The difference in bid factors between the two
auction formats remains substantial. Winners bid higher in CVA and lost,
on average, more than in CPA (mean loss of C= −24.47 in CVA vs. C= −9.34
in CPA, p-value< 0.001 in t-test of differences with cluster-robust standard
errors). As shown in Figure (4), the cumulative distribution function (CDF)
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of winning payoffs in CV auctions first-order stochastically dominates the
CDF in CP auctions.
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Figure 3: Bid Factors (=bid - RNNE bid) in Winning Bids in Treatments
CVA (left) and CPA (right)

Result 2 The winner’s curse effect is attenuated in the common-probability
compared to the common-value auction.

This difference between CVA and CPA occurs for all parameter combi-
nations, i.e., for all eight lottery types. Appendix Figure (A 1) shows the
estimated median bid as a function of signals. In all eight auction types, the
median bidding curves for CV lotteries lie substantially above while those
for CP lotteries are slightly below the RNNE curve.

5 Individual Non-Strategic Pricing

The lower bids in CP auctions raise the question whether uncertain proba-
bilities affect strategic reasoning, reducing hereby the winner’s curse effect
or, whether differences in bids simply emanate from different valuations of
the lotteries across the two types of uncertainty. Understanding at what
level subjects’ behavior diverge across auction formats will help us assess

15



0
.2

5
.5

.7
5

1
D

is
tri

bu
tio

n

-100 -50 0 50 100
Payoff

CV CP

Figure 4: Cumulative Distribution Function of Winners’ Payoff

the environments in which different types of uncertainties may trigger dif-
ferent decisions.

We consider two main origins for these differences in bids: First, subjects
could possibly evaluate lotteries with uncertain outcomes differently from
those with uncertain probabilities. If so, differences could be captured by
differences in individual valuations, and would naturally extend to individual
choice problems. In Section 6, we discuss how risk aversion or non-expected
utility models like rank-dependent utility or salience introduce differences
in valuations of these lotteries.

Second, differences might be triggered by the strategic context. That is,
even if subjects value the two types of lotteries equally, the auction game
requires translating these valuations into strategic bids. The extent of strate-
gic sophistication may differ between the two auction formats in that, for
instance, it might be easier to reason through the adverse selection problem
with one versus the other type of uncertainty.

A straightforward way of assessing the importance of strategic uncer-
tainty is to strip the auction game off of its strategic elements.10 To do

10Similar approaches can be found in (Charness et al., 2014, i.a.)
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this we devise an additional experiment that resembles the auction game
but contains decision problems only. Analogous to the first experiment, the
second experiment also consists of two treatments, CVL and CPL, with the
main difference being that subjects do not compete against other bidders.
In treatment CVL we elicit subjects’ willingness-to-pay (henceforth WTP)
for a series of CV lotteries whereas in treatment CPL we do the same for CP
lotteries. The WTP, rather than the certainty equivalent or the willingness
to accept, serves here as the counterpart to a bid when a subject does not
engage in any strategic reasoning. In a nutshell, treatments CVL and CPL
provide an empirical benchmark for subjects’ non-strategic naive bidding
function, i.e., their bid as a function of a private signal when the latter is
the only relevant information. At this point, it is worth mentioning that
we view the naive bidding curve as the theoretic non-strategic benchmark.
In reality, it could well be that other non-strategic considerations like com-
petitiveness, thrill of winning, etc. induce naive bidders do bid differently
than their individual valuations, leading to a discrepancy between bids and
valuations that is not due to “strategic” reasoning in its strict sense. In the
following we use the term “non-strategic” to refer to individual considera-
tions, abstracting from any strategic and non-strategic effects arising from
social interaction.

In the first case of different valuations, we further distinguish between
three possible reasons for why subjects might value CV and CP lotteries
differently. First, when presented with both lotteries, subjects might value
uncertainty in values differently than uncertainty in probabilities. The type
of uncertainty would then affect subjects’ valuations even before receiving
any signal. Second, differences could arise at the information processing
stage. More specifically, supposing subjects evaluate lotteries ex-ante simi-
larly, they still may process signals about values in CV lotteries differently
than signals about probabilities in CP lotteries. The processing of equivalent
value and probability signals would then lead to different interim valuations
of CV and CP lotteries. Third, a more fundamental skill that is required
in this context is subjects’ ability to reduce compound lotteries. One of
the features of our auctions is that the objects for which subjects bid are
lotteries and, in fact, compound lotteries. They differ, however, in that in
the CV lottery the compounding is first over whether the good for sale has
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a positive value or not and then over its exact value while, in the probabil-
ity lottery, the compounding is first over the exact probability of receiving
the big prize and then, given this success probability, whether the lottery
realizes to the big prize or zero. If subjects have different approaches to
reducing these compound risks, this may affect the way they value the lot-
teries they are bidding for and hence be responsible for our auction results.
Such differences, however, would stem from cognitive difficulties rather than
preferences. We design the second experiment in a way that allows us to
further disentangle these three possible sources.

The two treatments, CVL and CPL, share the same structure: each
consists of three parts. In the part “Compound Lotteries” (CL) we investi-
gate how subjects value lotteries in their ex ante and interim form (before
and after receiving a signal about the lottery’s worth) while in another part
“Reduced Lotteries” (RL) we examine the impact of compounding risk by
eliciting subjects’ valuations for the reduced form of lotteries. In the last
part of the experiment we measure our subjects’ attitudes toward risk, com-
pound risk and ambiguity. This last part is identical to the last part in the
auction treatment (for a more detailed description see Appendix B). This
last stage is also followed by a similar, unincentivized questionnaire.

5.1 Experimental Design

Part CL: Valuation of Compound Lotteries Before and After Pri-
vate Information. In our CVL and CPL treatments we elicited subjects’
WTP for the lotteries with a Becker-DeGroot-Marschak mechanism (1964,
henceforth BDM). Different subjects were recruited for the CVL and CPL
treatments, but within each treatment subjects performed a variety of tasks.
Hence we have a between-subjects treatment with respect to whether the
lottery had CV or CP features, but a within-subjects treatment with respect
to the tasks each subject is asked to perform.

In Part CL of the treatment, subjects engage in the same eight environ-
ments presented in the auction game. To isolate the effect of signal process-
ing from ex ante evaluation, we separate the subject’s valuation of a lottery
type before and after receiving a signal. For example, in the treatment CPL
a subject would be presented with a lottery with a fixed prize, say C= 60,
and a probability p of getting that prize that could be any integer between
10% and 70% with equal probability. With the complementary probability
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she receives zero. That means that instead of knowing the probability for
sure, only a range of possible probabilities (i.e., the probability could be
10%, 11%, 12%, ... , 69%, or 70%) was shown to the subject and she has to
specify a WTP based on this description. We call this the ex ante lottery
since the subject is asked to state a WTP based only on this description
of the lottery and without any signal as to which probability might be the
actual probability used to determine the subject’s chance of receiving the
big prize of C= 60.

To determine whether or not a lottery is bought we endow the subjects
with C= 100 with which to bid, with any unspent credits paid to the subject.
We then use the BDM mechanism so that after she submits her WTP, a
random number between 0 and 100 sets the lottery price. The subject
buys the lottery if its price is weakly less than her WTP. In that case, any
gains or losses are added to or subtracted from her endowment of C= 100.
Otherwise, she does not engage in the lottery and ends the round with her
initial endowment. The experimental interface remains essentially the same
as in the auctions, with the only difference being that the subject submits
her WTP for lotteries in a non-strategic setting rather than a bid in an
auction.

After stating her ex-ante WTP, she submits 10 different WTP in 10
subsequent rounds after observing a random signal in each round. Since
these rounds rely on signal processing, we refer to these decisions as interim
WTP. Hence, in Part CL, the subject submits 11 decisions per environment:
a first one without signal and 10 after receiving a random signal.

After every round with signal, the subject sees the actual lottery ticket,
its price and its outcome (irrespective of whether or not she buys). To keep
learning dynamics as similar as possible to the auction treatments, there is
no feedback after submission of the ex-ante WTP.

Part RL: Valuation of Reduced Lotteries.

Part RL of the experiment focuses on subjects’ ability to reduce com-
pound lotteries. To identify whether cognitive difficulties are at work in
our auction, we present subjects with the same lottery types but in reduced
form. More precisely, we reduce the lotteries our subjects face by compound-
ing the probabilities for them and present them with lotteries defined over
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Figure 5: Example for Screen Interface in Part RL

final payoffs. In each round, a wheel is used to display the (up to 62) possible
outcomes of a reduced lottery in a simple and condensed graph (see Figure 5
for an example of a CV lottery). Similarly to Part CL, the subject sees her
endowment of C= 100, the lottery wheel and then states her WTP in a BDM
mechanism. In Part RL, we abstract from signal processing and present the
subjects only with lotteries without signals to elicit their ex-ante WTP. Like
in Part CL, the subject does not receive any feedback after submitting her
ex-ante WTP.

A total of 104 subjects participated in the lottery treatments, of which
54 (50) were assigned to treatment CVL (CPL). We collected data across a
total of nine sessions, where every session lasted approximately 90 minutes.
We reversed the order of the first two parts CL and RL for one third of the
subjects.

5.2 Results

In Absence of Strategic Incentives. To present our results we com-
pute the analog to the bid factor in a non-strategic setting by measuring the
difference between wi, subject’s willingness to pay for a lottery, and E[L|si],
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the lottery’s objective expected value given the subject’s signal. To empha-
size its correspondence to the bid factor, we call it the non-strategic price
factor and denote it with PF = wi − E[L|si]. In other words, the price
factor is equivalent to the negative of a risk premium.

For a better comparison with the auction data, we use the fact that the
E[L|si] represents the naive bidding curve in the auction and compute the
same measure with the bids, leading to a non-strategic bid factor (BFns)
measure with respect to the naive benchmark (BFns = bid − E[L|si]).
Figure 6 shows the distribution of non-strategic bid factors by treatment
CVA and CPA. We juxtapose Figure 7 that shows the distribution of non-
strategic price factors by treatment CVL and CPL. The treatment effect that
we found in the auction experiment, while still present in the non-strategic
context, is largely attenuated. There is a small significant difference as
subjects priced CV lotteries above, but CP lotteries below their expected
value, willing to pay, on average, C= 4 more when the uncertainty was defined
over values rather than probabilities (p-value < 0.001 in median test). This
average difference of C= 4 (in the median, C= 6 in the means) is, however,
substantially smaller than the difference of C= 17.6 observed in the auctions.
In this sense, strategic uncertainty seems to be one major amplifier of the
main treatment effect.11 12

To understand how these valuations come about we next contrast valuations
for lotteries in ex ante valuations, stated before getting a signal, to interim
valuations, stated after observing a signal.

Ex-ante Valuation of Lotteries. One interesting result is that we find
no differences in medianWTP for ex ante CV and CP lotteries (see Figure 8).

11This is consistent with the observation that the winner’s curse is more prevalent with
increasing number of bidders (Charness et al., 2014).

12Note that incentives differ between the auction and the lottery treatments. In first-
price auctions, a Nash equilibrium bidder pays his bid and in expectations makes small
profits. In the lottery treatment, subjects pay the random price, which is, in expectation
and conditional on buying, half the subject’s WTP. Monetary incentives are therefore,
on average, higher in the lottery treatment and could partly explain the smaller differ-
ences in the lottery treatments. However, monetary incentives should have a similar effect
across CV and CP treatments, but the asymmetry in findings between CV and CP treat-
ments casts some doubts on monetary incentives being the main reason for the observed
differences between auction and lottery treatments.
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Figure 6: Distribution of Strategic Bid Factors (=bid-E[L|si]) in the Auc-
tion Treatments CVA (left) and CPA (right)
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Figure 7: Distribution of Non-strategic Price Factors (=wi − E[L|si]) in
the Lottery Treatments CVL (left) and CPL (right)
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More specifically, without any further information in the form of a signal,
subjects chose an average uncertainty premium of C= 4 regardless of whether
uncertainty was represented by a range of values or a range of probabilities.
In that sense, the general perception of lotteries with uncertain values versus
uncertain probabilities does not explain why subjects were willing to pay
more or less than the expected value after receiving a value or a probability
signal.
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Figure 8: Distribution of Ex ante Price Factors for Compound Lotteries
(=wA − E[L]) in Treatments CVL (left) and CPL (right)

Reduced lotteries. Remember, however, that the description of lotteries
involves some understanding of compound risk. Since we find no difference
in the values of lotteries ex ante, it is of interest to investigate whether their
perception of lotteries is accurate in either case. To do this, we compare
subject’s valuations for the same lotteries in compound and reduced form.

This within-subject comparison of WTP for otherwise identical com-
pound and reduced lotteries reveals that, in the aggregate, subjects priced
compound and reduced lotteries equally. In CVL, subjects made no such
distinction when valuing reduced and compound CV lotteries. The median
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premium for compound risk in values is zero, suggesting that compound risk
in values may not necessarily be perceived as such.13 In CPL, they chose
a small average compound risk premium of C= 2 for CP lotteries. That is,
subjects priced the reduced CP lotteries slightly higher than their compound
analog.
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Figure 9: Differences Between Valuations for Compound and Reduced
Lotteries (=wCLi − wRLi ) in Treatments CVL (left) and CPL (right)

Note that, while subjects priced CV lotteries above expected values upon
receiving value signals, in valuation of ex-ante lotteries we observe the op-
posite pattern. Subjects priced CV lotteries below their expected value. In
that sense, ex-ante valuations for both CV and CP lotteries are equally be-
low expected values and do not explain why with private signals subjects

13There are some order effects in the comparison of reduced and compound lotteries.
Whether subjects first saw reduced or compound lotteries turns out to matter, albeit only
in the CV treatments. In the aggregate subjects chose similar WTP with and without
compound risk when they valued the compound lottery before its reduced form version
(median compound risk premium of 0 in CV lotteries). Seeing the reduced lottery first,
on the other hand, increases (rather than decreases) their WTP for the compound version
of CV lotteries by C= 3.5. In other words, the median premium for compound risk defined
over values is even negative, implying that the average subject was more averse to the
reduced than to the compound version of the CV lottery.
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are willing to pay more than the expected value of CV lotteries but less than
the expected value for CP lotteries.

Interim Valuation of Lotteries. We next study the importance of infor-
mation processing in this decision problem. The empirical value of a signal
is obtained by comparing subjects’ willingness to pay before and after re-
ceiving signal si. To this end, we regress subjects’ willingness to pay wi on
objective measures like the prior expected value E[L] and the information
content of the signal given by (E[L|si] − E[L]). We also include a dummy
Dsignal that equals one when the willingness to pay was submitted after
observing a signal.

Table 2: Median Regression Coefficients

WTP EV CV CP Diff

E[L] 1 0.898∗∗∗† 0.830∗∗∗††† 0.068
(0.053) (0.039) (0.068)

E[L|s]− E[L] 1 1.051∗∗∗ 0.905∗∗∗††† 0.146
(0.084) (0.030) (0.103)

Dsignal 0 5.292∗∗∗ 2.074∗∗ 3.218
(2.027) (0.947) (2.419)

Cons 0 -0.335 0.074 -0.409
(2.349) (1.497) (2.783)

N 4256 4000 8256
Subjects 54 50 104
R2 0.234 0.390
F − Test 0.0434 0.0000 0.0000

Note: Median regression with cluster robust standard errors
(CRSE) at subject-level in parentheses. Significant difference from
0: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01. Significant
difference from pricing at expected value (EV): †: p-value<.1,††:
p-value<.05, †††: p-value<.01.

As shown in Table 2, we do not find substantial differences in the way
subjects processed these value and probability signals. Under risk-neutral
expected utility, pricing occurs at the expected value. That is, an increase
of C= 1 in prior and interim beliefs is reflected in an equivalent increase of
C= 1 in prices, while uncertainty premia (captured by the constant and the
dummy variable) should be zero (cf. first column of Table 2). In treatment
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CVL, subjects reacted reasonably to variations in both, prior parameters
and signals as the corresponding coefficients do not substantially differ from
the RNEU benchmark. In treatment CPL, subjects slightly underreacted
to variations in the parameters, but more importantly coefficients do not
differ from the ones in CVL. Hence, subjects processed value and probability
signals similarly.

Another striking observation is that in both CVL and CPL, the mere fact
of observing a signal significantly increased WTP by C= 5 and C= 2, respec-
tively. In other words, even when objective prior and interim expectations
coincided, subjects were willing to pay more after observing a signal. This
could be rationalized to some extent with a reduced uncertainty premium
in interim beliefs, as seen in the treatment CPL where after getting a sig-
nal subjects bid closer to expected value. Rather surprising is that in CVL
subjects bid, on average, even above expected values after seeing a signal,
implying that the mere fact of getting a signal led subjects to move from an
average positive to a negative uncertainty premium.

We next investigate the discrepancy between the auction and the pric-
ing data. A comparison between strategic bids and non-strategic WTP for
the same lotteries reveals that strategic considerations have a different im-
pact on bids depending on whether subjects evaluated CV or CP lotteries.
Valuations for CP lotteries with and without strategic incentives are rather
stable. On average, subjects priced CP lotteries almost C= 1.8 below their
expected value, and in auctions, bid C= 2.21 less for the same CP lotteries
(p < 0.001 in median comparison of bids and prices for CP lotteries). In
contrast, valuations for CV lotteries substantially differed across settings.
In CV auctions subjects bid, on average, C= 13 above the expected value of
the lottery, but priced the same lotteries close to the expected value in the
non-strategic environment (C= 2 above expected value, i.e., on average C= 11
less than in auctions, p < 0.001 in median test). Comparing information
processing across auction and lottery settings (cf. Table 2 and Appendix
Table A4), we note that behavior in CP treatments is rather consistent:
subjects underreacted to variation in signals when both bidding for and
pricing CP lotteries. In contrast, subjects in CV treatments reacted more
to value signals in the auction than in the lottery treatment. In other words,
the observed difference across strategic and non-strategic settings is mainly
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driven by a different bidding behavior for CV lotteries in contrast to their
non-strategic valuations. In general, both in the auctions and lottery treat-
ments, uncertainty over outcomes generates more variance than uncertainty
over probabilities.

Experiment II provided us with new insights. The lack of differences in
ex-ante valuations teaches us that, in fact, differences in our auctions are
not a direct consequence of the different types of uncertainty (i.e., uncer-
tainty over values vs. over probabilities). They also cannot be attributed
to difficulties of reducing compound risk in values vs. probabilities. While
information processing introduces small differences, it is also not the main
driver. Signals generally led subjects to price both CV and CP lotteries
higher, but in particular subjects then priced CV lotteries above their ex-
pected values. This difference is small in simple lottery pricing but substan-
tially exacerbated by strategic uncertainty when subjects have to translate
prices into bids. In fact, strategic uncertainty matters particularly in the CV
environment where we observe more differences between pricing and bidding
behavior.

6 Discussion

In this section we will discuss a number of possible explanations for our
observed difference in behavior between our CV and CP auctions. As was
discussed above, submitting a bid in an auction whose underlying prize is a
lottery is a three stage process. First one has to value the lottery ex ante or
before one receives a signal as to its worth. Then, in the interim stage after
receiving a signal, one has to update that value. Finally, in the bidding stage,
one has to transform one’s updated value into a bid under some assumption
on the behavior of one’s opponent. Differences in the bids submitted across
our auction formats may occur at any of these stages. Subjects may value
CVL’s differently from CPL’s and hence bid differently for them, or update
the value of the lottery differently once receiving a signal. However, if in
the first two stages we cannot find any difference in the way our subjects
value the objects they are bidding for, then the only explanation remaining
is that the strategic uncertainty existing across these auctions appears to be
different and leads our subjects to bid differently.
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In our discussion below we explore a number of theories that one might
use to explain the difference in the way our subjects value the lotteries in
their common values and common probability formats. In all the theories
discussed, however, we do not find any that can explain the differences
in the observed bidding behavior of our subjects and hence we come to
the conclusion that if behavior differs across our two auction formats, that
difference must derive from the different ways our subjects treat the strategic
uncertainty existing in these two auctions rather than from the way they
value the underlying objects they are bidding for. This conjecture is further
supported by the lack of substantial differences in valuations in the lottery
treatments.

This suggests, however, that what we observe are persistent differences
in non-equilibrium behavior supported by a process of thinking that reacts
differently to the two environments we place our subjects in. Since game
theory only explains equilibrium behavior, there are no obvious strategic
theories that come to mind that could help unravel our puzzle. Given the
need for more elaborate research in this direction, we are content to leave
our common probability puzzle unsolved for the moment.

6.1 Differences in Underlying Lotteries Under Expected Util-
ity

One obvious way in which bidding behavior can differ across our auctions
is for subjects to value the lotteries they are bidding for differently across
the CV and CP environments. For example, while we present subjects with
equivalent lotteries in terms of their expected value, they are not equivalent
with respect to their variance. Theoretically, the effect of risk-aversion in
first-price common-value auctions is ambiguous (see Kagel and Levin, 2002),
but we find a general negative correlation between the risk premia elicited
in the last part of our experiment and the bids submitted by our subjects
(see Appendix Tables A5 and A6). Hence, if our subjects were risk-averse
then we would expect lower bids in the CV as opposed to the CP auction
given that CV lotteries are generally riskier. The fact that we discovered
no difference in our subjects’ willingness to pay for the underlying lotteries
(despite the bigger variance in the CV lottery) and also found no difference
in the average degree of risk aversion across our treatments, suggests that
risk aversion cannot be relied on to explain behavioral differences in our
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experiments. Similarly, if our subjects processed these signals about the
common probability or common value differently before converting them
into bids, then we might observe the type of difference we observed. Again,
as we have shown in our lottery treatments, such differences are negligible.
Hence we cannot look to simple explanations like risk aversion or information
processing to explain why subjects may value probability auctions differently
than value auctions.

6.2 Differences in Underlying Lotteries Under Non-Expected
Utility

Another avenue to help explain our results would be to posit non-expected
utility for our subjects which might lead them to value the lotteries they
face differently depending upon whether they are CV or CP lotteries. Here
it is important to note that, because of the similarity of CV and CP lotter-
ies, preferences that differ from linear expected utility introduce systematic
deviations from expected values to different extents but in the same direc-
tion for both auctions. Therefore, unless one is willing to allow for decisions
weighting or utility functions that differ across sources of uncertainty (Ab-
dellaoui et al., 2011; Klibanoff et al., 2005; Nau, 2006; Seo, 2009), none of
these non-expected utility models can rationalize biases in opposite direction
from the expected value and hence none can serve as the basis to explain
our results. Let us explore some of these models.

6.2.1 Rank-Dependent Utility

Rank-dependent utility, that allows for different attitudes toward variation
in utilities and probabilities, also generates different valuation of the lotter-
ies. Here decision-makers evaluate lotteries via a rank-dependent expected
utility of the general form:

RDU(L) =
∑
j

πju(vj)

withπj = w(
n∑
j=1

pj)− w(
n∑

j=1+1
pj) and v1 < ... < vj < ... < vn.

where vj , j = 1, .., n represent all possible outcomes of a lottery ranked
from low to high values and w(·) is the weighting function applied to cumu-
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lative probabilities.
Suppose, for instance, that subjects have pessimistic decision weights

(i.e., the weighting function of cumulative probabilities, w(·), is convex). For
a simple illustration consider only the high outcome of the lottery and linear
utility. In that case, pessimistic decision weights induce the decision-maker
to put more weight on lower outcomes and lead then to a lower expected
high prize in CV than the known high prize in CP lotteries (E[ũ]CV < kCP ,
with ũ ∼ U [vl, vh] and vl < k = vl+vh

2 < vh). With our considered set
of parameters, a convex weighting function leads to an undervaluation of
both lotteries. However, because possible values in CP lotteries are a subset
of the possible values in CV lotteries, the latter are valued lower than CP
lotteries. This would lead bidders to bid higher for CP lotteries than for
CV lotteries, which is the opposite of what we observe. A concave (i.e.,
optimistic) weighting function obtains the reversed pattern, i.e., E[L] <
EU [LCP ]RDU < EU [LCV ]RDU .

Assuming that weighting and utility functions do not, on average, differ
between subjects in the two treatments, rank-dependent utility would create
a deviation from equilibrium bids in the same direction for both lotteries.
The bias would be attenuated for CP lotteries, like it is in our experiment.
However, while decision weights would have to be optimistic to match our
observed pattern in CV auctions, the slight underbidding for CP lotteries
would not be consistent with optimistic decision weights.

6.2.2 Non-Neutrality Toward Compound Risk

Another avenue through which subjects may value our CVL’s and CPL’s
differently is through their perception of the compound risk in each lottery.
More precisely, compound risk is present in both CP and CV lotteries, which
both consist of a combination of a binary lottery and a uniform distribution.
Even though the perceived complexity of reducing these compound lotteries
might differ, any failure to reduce compound lotteries would impact deci-
sions in both environments. As our data in Section 5 and introspection sug-
gest, there is no obvious erroneous pattern of reducing compound lotteries
that introduces systematic biases in opposite direction of the expected value.
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6.2.3 Salience Theory

Different dimensions of uncertainty might emphasize different features of a
lottery and might, therefore, generate different valuations for them. In their
salience theory, Bordalo et al. (2012) postulate that the salience of payoffs
but not of probabilities determines decision weights. In our context, the
uncertainty in values renders extreme high values (e.g., C= 90 in lottery type
1) more salient. Uncertainty in probabilities, on the other hand, should have
no effect on the subjective perception of the lottery.

When subjects evaluate a lottery in isolation, the predictions of salience
theory depend on the value to which subjects compare the lottery. They
may compare the lottery to a status quo of nothing (i.e., the value zero)
or, alternatively, to the expected value of the lottery.14 For instance, when
the status quo is zero, lottery outcomes that differ from zero become more
salient. A subject will then assign higher decision weights to these higher
outcomes, and will consequently overvalue the lottery. Because the CV lot-
tery has a higher maximum than the CP lottery (γh > v), she will value a
CV lottery more than a corresponding CP lottery (see Appendix Figure A
4). In contrast, if she compares the lottery to its expected value, the location
of the expected value will determine whether the minimum or the maximum
outcome become more salient. If the expected value is sufficiently high, she
will assign more decision weight to the minimum payoff of 0 and will under-
value the lottery (see Appendix Figure A 5). In our experiment, because
the value domain of the CP lottery is a subset of the value domain of CV
lottery, the salience bias is always more pronounced for lottery CV regard-
less of the comparison benchmark. The comparison benchmark determines
only whether the decision maker over- or undervalues the lottery compared
to a decision maker with standard linear utility.

In a nutshell, although the salience bias generates different valuation of
the lotteries, the bias always go in the same direction for both lotteries. As a
result, based on their evaluations of the underlying lotteries, salience theory
does not explain why subjects overbid for CV but slightly underbid for CP
lotteries .

14Bordalo et al. (2012) distinguish between the valuation and the revealed preference
approach. In the valuation approach the comparison benchmark is zero while in the
revealed preference approach any nonzero sure payoff could be used to compute certainty
equivalents.
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6.2.4 Differences Due to the Source of Uncertainty

Note that one might rationalize differences across auction formats if we allow
decision weights to differ across these two types of uncertainty. Abdellaoui
et al. (2011) study decisions under uncertainty by allowing weighting func-
tions in rank-dependent utility to differ across sources of uncertainty. While
they distinguish, in particular, between events with known and unknown
probability distributions, one could similarly perceive uncertainty over out-
comes and probabilities as different sources of uncertainty. An alternative
form of modeling variations are source-dependent utilities (instead of source-
dependent decision weights) that vary across the type of uncertainty. For
instance, in models with recursive expected utilities (Abdellaoui et al., 2011;
Klibanoff et al., 2005; Nau, 2006; Seo, 2009), one could model different util-
ity functions not only for risk and ambiguity, but also for different types of
uncertainty. While such differences in decision weights might help explain
our observed difference across CV and CP auctions, positing such difference
is ad hoc and would not be based on any logical foundation.

6.2.5 Different Ways of Processing Signals: Scale Compatibility
and Anchoring.

Ever since Tversky and Kahneman (1974) experiment anchoring has been
found to be a persistent phenomenon in the experimental literature. Sub-
jects’ responses are affected by irrelevant or relevant information. In our
design, the signal provides a starting point for subjects’ reflections. Chap-
man and Johnson (1994) show that anchoring matters only to the extent
that anchors and responses have the same scale. In our treatment compari-
son, subjects might be more prone to anchor to value signals in CV auctions
that are on the same scale as bids as opposed to probability signals in CP
auctions that do not represent possible outcomes. In that case, bids in CV
auctions would be biased towards signals whereas bids in CP auctions would
remain unaffected. In that sense, our data is to some extent consistent with
anchoring on compatible anchor/response scales.

An alternative model of compatibility is Tversky et al. (1988)’s contin-
gent weighting model, according to which decision attributes that are com-
patible with the response mode receive more weight in the judgment pro-
cess. This interpretation is slightly different from the Chapman and Johnson
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(1994) analysis of scale compatibility because, even without additional sig-
nal to anchor on, having uncertainty over values rather than probabilities
might induce subjects to focus more on the value than on the probability
component of a lottery. Our data is only partly consistent with this inter-
pretation. Indeed, our subjects in CV auctions put four times more weight
on their value signal than on the probability (cf (β/α) in regression Table
A9 ), but those in CP auctions put nevertheless 1.25 times more weight
on probability signals than on values despite the response scale being in
values. Finally, there are also no apparent reasons why anchoring would
matter more in bidding than in pricing, where we do not observe important
discrepancies.

6.3 Strategic Components

Our analysis above tends to rule out differences in bids across our CV and
CP auctions as resulting from the different ways subjects value the lotteries
they are bidding on. From what we have seen, several theories propose
differences in lottery valuations pointing in a direction opposite to what
we observe. Hence, if bidding behavior differs it must be the result of the
strategic uncertainty that exists in our auctions and the different ways in
which subjects view this uncertainty rather than the way they value lotteries.
This is curious since the process of submitting an equilibrium bid in each
auction is identical.

7 Conclusion

We consider an alternative modeling of common-value auctions, one in which
uncertainty is defined over probabilities and bidders receive private infor-
mation about probability distribution rather than outcome values. These
common-probability auctions give rise to a different bidding behavior that
conforms with the risk-neutral Nash equilibrium and stands in stark con-
trast to the robust observation of overbidding in common-value auctions.
We investigate possible explanations for this unconventional bidding behav-
ior, and find that the type of uncertainty per se does not trigger differences.
Without private information, subjects valued the auctioned item similarly.
Instead the type of uncertainty appears to interact with information pro-
cessing (to some extent), but primarily with strategic considerations. While
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subjects priced lotteries slightly higher after updating on signals in the CV
auctions, this slightly suboptimal updating behavior was substantially am-
plified in a strategic setting when valuations were translated into bids. In
other words, bids and prices were much more erratic when uncertainty was
defined over values rather than probabilities. Our experimental findings ex-
pose the need for more thorough research on the link between the type of
uncertainty, information processing and strategic considerations. Not only
will it allow us to further understand to what frameworks robust empirical
anomalies may or may not extend to, it might also shed more light on the
precise sources of the winner’s curse effect.
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A Descriptive statistics

A.1 Bid and Price Factors

Table A1: Bid Factor (BF)

CVA CPA Diff.

Naive bid mean 10.59∗∗∗ -4.79∗∗∗ 15.38∗∗∗

(bid-bidNaive) (1.877) (1.446) (2.364)

median 13.6∗∗∗ -4∗∗∗ 17.6∗∗∗

Break-Even bid mean 12.32∗∗∗ -3.04∗∗ 15.36∗∗∗

(bid-bidBE) (1.877) (1.446) (2.364)

median 15.48∗∗∗ -2.08∗∗∗ 17.56∗∗∗

Nash-Eq. bid mean 13.39∗∗∗ -1.96 15.35∗∗∗

(bid-bidRNNE) (1.876) (1.447) (2.363)

median 16.60∗∗∗ -1.00 17.60∗∗∗

Note: Cluster robust standard errors (CRSE) in parentheses. ∗: p-
value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01.
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Table A2: Bid Factor (BF) – Winnning Bids

CVA CPA Diff

Naive bid mean 24.83∗∗∗ 9.06∗∗∗ 15.77∗∗∗

(bid-bidNaive) (0.778) (1.061) (1.314)

median 23.6∗∗∗ 8.20∗∗∗ 5.40∗∗∗

Break-Even bid mean 26.56∗∗∗ 10.80∗∗ 15.76∗∗∗

(bid-bidBE) (0.776) (1.086) (1.333)

median 25.44∗∗∗ 10.16∗∗∗ 15.28∗∗∗

Nash-Eq. bid mean 27.63∗∗∗ 11.89∗∗∗ 15.73∗∗∗

(bid-bidRNNE) (0.775) (1.099) (1.343)

median 26.80∗∗∗ 11.26∗∗∗ 15.54∗∗∗

Note: Cluster robust standard errors (CRSE) in parentheses.∗: p-
value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01.

Table A3: Price Factor

CVL CPL Diff.

Part CL with signal
Price Factor mean 5.12∗∗∗ -1.03 6.16∗∗∗

(price− E[L|s]) (1.676) (1.006) (1.945)

median 2.4∗∗∗ -1.8∗∗∗ 4.2∗∗∗

Part CL without signal
Price Factor mean 0.75 -3.00∗∗ 3.75∗

(price− E[L|s]) (1.679) (1.417) (2.188)

median -4 -4 0

Part RL
Price Factor mean -2.93∗ -1.37 -1.56
(price− E[L|s]) (1.684) (1.132) (2.022)

median -5 -1 -4∗∗∗

Note: Cluster robust standard errors (CRSE) in parentheses. ∗: p-value<.1,∗∗: p-
value<.05, ∗∗∗: p-value<.01.
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Figure A 1: Estimated Median Bids in CV and CP Auctions by Lottery
Types
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A.2 Regression analyses

We use the similarity of the auction and pricing treatments to contrast here
the regression estimates from Table (2) with a similar regression on the auc-
tion data (in Appendix Table A4 ). In auctions, our parameter variations
allow us to estimate subjects’ sensitivity to three potentially relevant compo-
nents of bidding. The first row of Table A4 renders the reaction to changes
in the ex ante expected value of the lottery, E[L]. The average response to
signals is measured by the coefficient of the difference between the naive bid
and the ex ante expectation, (E[L|s] − E[L]). Here, instead of the dummy
variable Dsignal that compares decisions with and without signal processing,
we include a possible indicator for strategic sophistication. The extent of
bid shaving with less precise signals is given by the coefficient of the differ-
ence between the RNNE and the naive bid, (bRNNE−E[L|s]), which in turn
depends on the signal’s precision. Table A4 also shows the predicted values
of the coefficients in the risk-neutral Nash equilibrium, to which estimated
coefficients can be compared.

In contrast to the treatments CVL and CPL, differences between the two
auction formats appear at all three levels. In CPA, individual coefficients
do not differ from the Nash equilibrium: subjects reacted appropriately to
variation in both the ex-ante expected value of the lottery and the signal.
However, a joint test depicts a deviation from the RNNE bid as they ex-
ante slightly undervalued the lotteries, slightly overreacted to the signals
and shaved their bid slightly less than they should (p=0.0322 in F-test),
leading overall to an estimated bidding curve that lies below the RNNE bid
(see Figure A 1).

Subjects in CV auctions, on the other hand, significantly deviated from
the RNNE prediction (in both joint and individual coefficient tests). They
overvalued lotteries ex-ante and overreacted to signals about values. In-
terestingly, the signal’s precision had a bigger impact in CV than in CP
auctions. Subjects in CV auctions shaved their bids disproportionately with
less precise signals but the amount of shaving was not sufficient to offset the
general overbidding. Notice, however, that it is not clear whether subjects’
reaction to the signal’s precision reflects strategic sophistication or varying
confidence in the signals.

Comparing the regression estimates from the strategic auction and the
non-strategic pricing data (Tables 2 and A4) shows that, overall, estimates in
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Table A4: Median Regression Coefficients

Bid RNNE CVA CPA Diff.

E[L] 1 1.386∗∗∗††† 0.841∗∗∗ 0.545∗∗∗

(0.059) (0.118) (0.138)
E[L|S]− E[L] 1 1.694∗∗∗††† 1.126∗∗∗ 0.568∗∗∗

(0.045) (0.084) (0.097)
(E[L|S]− E[L])2 0 -0.017∗∗∗ 0.005 -0.022∗∗

(0.005) (0.008) (0.009)
BidRNNE − E[L|S] 1 2.820∗∗∗††† 0.474 2.346∗∗∗

(0.442) (0.460) (0.629)
Cons 0 13.949∗∗∗ 0.873 13.075∗∗∗

(3.017) (1.730) (3.629)

N 5762 3260 2502 5762
Subjects 90 52 38 90
R2 1.00 0.277 0.282 0.371
F-Test on NE 0 0.000 0.032

Note: Median regression with cluster robust standard errors (CRSE) at
subject-level in parentheses. Significant difference from 0: ∗: p-value<.1,∗∗:
p-value<.05, ∗∗∗: p-value<.01. Significant difference from RNNE coefficient:
†: p-value<.1,††: p-value<.05, †††: p-value<.01.
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CP treatments vary little. The only small difference is that in CPL subjects
underreacted but in CPA overreacted to variations in signals. Estimates
differ more in CV treatments, where in CVA we observe stronger reactions
to both prior parameters and signals relative to CVL.

To better understand differences in bidding and pricing behavior, we
insert additional covariates in the regression model (see models (1)-(4) in
Appendix Tables (A5) to (A8). The effect of covariates is not necessarily
the same across strategic and non-strategic environments, and across CV
and CP treatments.

For instance, experience effects differ. Subjects generally chose lower
bids and prices after losing money in the previous period (Losst−1), except
in CV auctions where losses induced them to bid even more aggressively.
Incurring a loss appears to be the only experience effect in auctions where
a reciprocal time trend (1/t) does not detect any other relevant dynamics;
in the lottery treatments, on the other hand, subjects adjusted their chosen
prices upward over time.

In all treatments, subjects who scored higher on the cognitive reflection
test chose, on average, lower bids or prices. Apart from the cognitive re-
flection test, individual covariates are non-significant in most treatments.
The exception are CP auctions where lower bids are associated with female
and more risk averse students, and CV treatments where bids are negatively
related to aversion to compound risk.
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Table A5: Median Regression Estimates in CVA

Bid (1) (2) (3) (4)

E[L] 1.398∗∗∗††† 1.380∗∗∗††† 1.336∗∗∗††† 1.350∗∗∗†††

(0.058) (0.050) (0.052) (0.050)
E[L|s]− E[L] 1.696∗∗∗††† 1.671∗∗∗††† 1.624∗∗∗††† 1.632∗∗∗†††

(0.051) (0.054) (0.087) (0.076)
[E[L|s]− E[L]]2 -0.016∗∗∗ -0.018∗∗∗ -0.015∗∗ -0.017∗∗∗

(0.004) (0.004) (0.006) (0.005)
BidRNNE 2.935∗∗∗††† 2.814∗∗∗††† 2.590∗∗∗††† 2.374∗∗∗††

(0.470) (0.492) (0.584) (0.576)
Payofft−1 -0.134∗∗∗

(0.028)
Losst−1 4.665∗∗∗ 4.960∗∗∗ 4.896∗∗∗

(1.678) (1.713) (1.789)
(Loss× Payoff)t−1 -0.072∗∗∗ -0.051∗∗ -0.061∗∗

(0.022) (0.022) (0.026)
1
t -0.383 -0.702 -0.397 0.093

(1.106) (1.138) (0.914) (1.002)
RP -3.074 -1.168

(4.140) (5.502)
AP -0.078

(5.502)
CRP -10.770∗∗

(6.778)
Male -1.088 -0.430

(2.806) (2.644)
CRT -2.609∗∗ -2.229∗

(1.236) (1.253)
Cons 13.412∗∗∗ 13.077∗∗∗ 18.433∗∗∗ 16.397∗∗∗

(2.937) (2.903) (3.538) (3.116)

N 3213 3213 3213 3213
Subjects 52 52 52 52

Note: Median regression with cluster robust standard errors (CRSE) in parentheses.∗:
p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01.
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Table A6: Median Regression Estimates in CPA

Bid (1) (2) (3) (4)

E[L] 0.834∗∗∗ 0.814∗∗∗ 0.871∗∗∗ 0.846∗∗∗

(0.120) (0.123) (0.086) (0.108)
E[L|s]− E[L] 1.114∗∗∗ 1.050∗∗∗ 1.068∗∗∗ 1.037∗∗∗

(0.087) (0.096) (0.075) (0.087)
[E[L|s]− E[L]]2 0.004 0.002 0.005 0.004∗∗∗

(0.007) (0.008) (0.008) (0.008)
BidRNNE 0.422 0.411 0.261 0.176∗∗∗†

(0.426) (0.443) (0.470) (0.474)
Payofft−1 -0.061

(0.096)
Losst−1 -2.233 -5.934∗∗ -6.181∗∗∗

(2.514) (2.540) (2.359)
(Loss× Payoff)t−1 -0.230∗∗∗ -0.223∗∗∗ -0.233∗∗∗

(0.126) (0.110) (0.123)
1
t 0.250 0.233 -0.257 1.120

(1.158) (1.246) (1.137) (1.074)
RP -7.204∗∗ -7.712∗∗

(3.948) (4.243)
AP 5.731

(4.947)
CRP 1.810

(7.356)
Male 5.973∗ 5.942∗∗

(3.076) (2.924)
CRT -3.116∗∗ -3.004∗∗∗

(1.301) (1.134)
Cons 0.865 1.088 -0.190 0.267

(1.839) (1.874) (4.008) (3.628)

N 2467 2467 2467 2467
Subjects 38 38 38 38

Note: Median regression with cluster robust standard errors (CRSE) in
parentheses.∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01.
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Table A7: Median Regression Estimates in Treatment
CVL

WTP (1) (2) (3) (4)

E[L] 0.913∗∗∗ 0.897∗∗∗ 0.903 0.898∗∗∗

(0.064) (0.060) (0.073) (0.073)
E[L|s]− E[L] 1.032∗∗∗ 1.032∗∗∗ 1.036∗∗∗ 1.049∗∗∗

(0.081) (0.077) (0.108) (0.092)
Dsignal 0.068 1.924 0.406 1.378

(2.582) (2.386) (3.126) (2.993)
Payofft−1 -0.265∗∗∗

(0.070)
Losst−1 0.580 -1.309 -1.227

(2.208) (2.065) (1.644)
(Loss× Payoff)t−1 -0.265∗∗∗ -0.266∗∗∗ -0.296∗∗∗

(0.070) (0.093) (0.079)
1
t -5.013∗∗ -3.200∗ -4.629∗ -3.383

(2.214) (1.920) (2.524) (2.094)
RP -9.099 -9.565

(5.702) (5.935)
AP -7.085

(5.855)
CRP -11.641∗

(5.571)
Male 2.912 -0.044

(4.034) (3.172)
CRT -2.211 -2.202∗

(1.451) (1.245)
Cons 5.635 2.914 9.643 9.005∗

(3.469) (3.156) (5.941) (5.104)

N 4634 4634 4381 4381
Subjects 54 54 51 51

Note: Median regression with cluster robust standard errors (CRSE) in
parentheses.∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01.
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Table A8: Median Regression Estimates in Treatment
CPL

WTP (1) (2) (3) (4)

E[L] 0.817∗∗∗††† 0.798∗∗∗††† 0.794∗∗∗††† 0.799∗∗∗†††

(0.402) (0.040) (0.042) (0.043)
E[L|s]− E[L] 0.906∗∗∗††† 0.904∗∗∗††† 0.905∗∗∗††† 0.901∗∗∗†††

(0.030) (0.029) (0.032) (0.032)
Payofft−1 -1.114e-15

(0.010)
Dsignal 0.391 -0.003 0.831 1.011

(1.277) (1.193) (1.367) (1.310)
Losst−1 -4.435∗∗∗ -4.528∗∗∗ -4.614∗∗∗

(1.006) (0.995) (1.030)
(Loss× Payoff)t−1 -0.319∗∗∗ -0.305∗∗∗ -0.316∗∗∗

(0.085) (0.082) (0.078)
1
t -1.820∗ -2.047∗∗ -1.491 -1.416

(0.955) (0.959) (1.018) (1.049)
RP -1.662 -1.711

(3.230) (3.201)
AP -0.538

(2.434)
CRP -0.190

(3.728)
Male 1.015 1.037

(1.733) (1.681)
CRT -1.312 -1.322

(0.904) (0.812)
Cons 2.423 3.326 4.718∗ 4.444∗

(2.036) (2.055) (2.631) (2.415)

N 4000 4000 3920 3920
Subjects 50 50 49 49

Note: Median regression with cluster robust standard errors (CRSE) in parentheses.∗: p-
value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01.
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We next estimate the elasticity of the bid with respect to the known and
the unknown (i.e., signal) component of the lottery. To this end, we use a
simple Cobb-Douglas bidding function in the form of b(si) = kα ·sβ. A naive
agent, for instance, would bid E[L|s] = kα · sβ with α = β = 1.

Table A9: Median Regression Coefficients in Bidding

ln(Bid) CVA CPA Diff.

ln(k) 0.254∗††† 0.745∗∗∗† -0.491∗∗

(0.137) (0.133) (0.204)
ln(si) 1.081∗∗∗††† 1.295∗∗∗† -0.214

(0.028) (0.175) (0.191)
Cons -0.298∗∗ 0.994∗∗ -1.293∗∗

(0.137) (0.496) (0.627)

N 3260 2502 5762
Subjects 52 38 90
R2 0.015 0.075
F − Test 0.000 0.032
MRS ≈ 0.23 s

k ≈ 0.57 s
k

Note: Median regression with cluster robust standard er-
rors (CRSE) at subject-level in parentheses. Significant
difference from 0: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-
value<.01. Significant difference from 1: †: p-value<.1,††:
p-value<.05, †††: p-value<.01. F-test refers to a test on
equal weighting of known parameter and signal (α = β).

We use the marginal rate of substitution (MRS) to compare the esti-
mated bidding functions. The MRS represents here how much units of the
signal subjects are willing to trade against a unit of the known parameter
to maintain the same bid. For a naive bidder, the MRS equals αs

βk = s
k . For

our parameter variation, MRS under Nash equilibrium should be close to s
k .

In both auction formats, the estimated MRS is smaller than s
k ( ≈ 0.23 sk in

CVA vs. ≈ 0.57 sk in CPA in Appendix Table A9), indicating that subjects
overweighted their private signal but underweighted the known component.
Subjects in CV auctions put relatively more weight on the signal compared
to those in CP auctions. Similar results are obtained with the pricing data,
where MRS are closer to the naive benchmark s

k (see Appendix Table A10).
While subjects put more attention on signals in both CV and CP formats
it is important to keep in mind that these signals are about different com-
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Table A10: Median Regression Coefficients in Pricing

ln(bid) CVL CPL Diff.

ln(k) 0.546∗∗∗††† 0.810∗∗∗††† -0.264
(0.157) (0.056) (0.067)

ln(si) 0.947∗∗∗ 0.974∗∗∗ -0.027
(0.069) (0.044) (0.066)

Cons -2.500∗∗∗ -3.847∗∗∗ 1.347
(0.721) (0.346)

N 4256 4000 8256
Subjects 54 50 104
R2 0.141 0.3919
F − Test 0.0209 0.0017
MRS ≈ 0.57 s

k ≈ 0.83 s
k

Note: Median regression with cluster robust standard er-
rors (CRSE) at subject-level in parentheses. Significant
difference from 0: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-
value<.01. Significant difference from 1: †: p-value<.1,††:
p-value<.05, †††: p-value<.01.

ponents of the lotteries. In CV treatments, subjects paid more attention
to values in the lottery whereas in CP treatments they rather focused on
the probabilities. In a nutshell, it appears that the uncertain component
determines how subjects allocate their attention to different features of the
auctioned item.
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B Individual Covariates

B.1 Attitudes toward risk, compound risk and ambiguity

In the last part of the experiment, we elicited subjects attitudes toward risk,
compound risk and ambiguity. Subjects started this part by first selecting
the payoff relevant task. To this end they threw a dice, knowing that the
number on top of the dice would define the selected task. The correspon-
dence between the dice numbers and the tasks were, however, revealed only
at the end of the experiment (Baillon et al., 2015). The exchange rate re-
mained the same ($1 for 6 credits), but payoffs from the main part of the
experiment were weighted more heavily than those in this last part (3:1).

This part consisted of only six decision problems. The six decision
screens corresponded to three types of decision problems with two replicate
measurements each.

B.2 Elicitation

We elicited risk attitudes with a multiple price list akin to Abdellaoui et al.
(2011) and Gillen et al. (2019). Subjects faced virtual bags with red and
blue chips. First subjects chose the color to bet on and then gave their
certainty equivalent (henceforth CE) for their chosen bet. Risky bets were
implemented with the following lottery (100:0.5;0) and (150:0.5;0) (i.e., a
50% chance of winning C= 100 / C= 150 or otherwise nothing).

To implement bets with compound risk, subjects were told that the com-
puter would first select with equal probability one virtual bag from a set of
virtual bags containing each a different mixture of red and blue balls (Fig-
ure A 2 shows an example of the screen for a bag with 20 chips), and would
then randomly draw a chip from the selected bag. Subjects received C= 100
(C= 150 in the replicate measurement) if the color of the drawn chip matched
the color they bet on.

The implementation of ambiguous bets was similar, except that the mix-
ture of red and blue chips was determined ex ante by a research affiliate and
was not known to subjects.
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Figure A 2: Example for a decision screen to elicit attitudes toward com-
pound risk (after selecting to bet on red and a certainty equivalent of 50
credits.)

B.3 Descriptive statistics

Methods. We classify attitudes as averse toward a type of uncertainty if
subjects’ prices display a premium for the corresponding lottery. In other
words, we classify subjects as averse if they chose a CE that is smaller than
the expected value. The subject’s premium for a lottery is defined as the
difference between its expected value and the subject’s CE. A positive (neg-
ative) premium reflects aversion (proclivity).

We mitigate possible measurement error by taking the mean of the two
replicate measurements: To this end we first normalize the CE by the lot-
tery’s expected value and average the normalized CE across the two repli-
cate measurements.15 16 Note that all decisions under uncertainty should
be affected by a risk premium, if a subject is not risk-neutral. In a crude

15For the ambiguous bets, we assume uniform beliefs over possible probabilities to com-
pute the lotteries’ expected value.

16Most subjects were also consistent in their attitudes, especially in their attitudes to-
ward ambiguity. The redundant measures yield the same classification for 71.15%, 75.96%
and 79.81% for attitudes toward risk, compound risk and ambiguity, respectively (in the
full sample).
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attempt to control for risk attitudes in decisions with compound risk and
ambiguity, we subtract the subject’s average risk premium from the chosen
premium for lotteries with compound risk and ambiguity (cf. Gillen et al.,
2019). This yields a conservative measure for premia under compound risk
and ambiguity since risk premia for binary lotteries should be highest when
the success probability equals 50% (as in the risky lotteries). Thus, premia
for compound risk and ambiguity that are corrected for individual risk pre-
mia become also negative in the cases where subjects were less averse toward
compound risk/ ambiguity than toward risk ( applies to 59 (60) out of 194
subjects for the compound risk (ambiguity) premium).

0
10

20
30

40
R

P

-1 -.5 0 .5 1
 

CV 

0
10

20
30

40
 

-1 -.5 0 .5 1
 

CP

0
10

20
30

40
C

R
P

-1 -.5 0 .5 1
 

0
10

20
30

40
 

-1 -.5 0 .5 1
 

0
10

20
30

40
AP

-1 -.5 0 .5 1
 

0
10

20
30

40
 

-1 -.5 0 .5 1
 

Figure A 3: Distribution of premia – by treatments CV (left) and CP
(right).

Results. Figure A 3 shows the distribution of risk, compound risk and am-
biguity premia, averaged across the two duplicate measures. Most subjects
were averse.

Distributions of premia are not significantly different from each other
across treatments (the Kolmogorov-Smirnov statistics yields p-values of p =
0.21, p = 0.45, p = 0.89 for risk, compound risk and ambiguity premia, re-
spectively). Most subjects chose a premium close to zero, and attitudes

54



toward compound risk and ambiguity are positively correlated (consistent
with Halevy (2007)’s finding). The pairwise correlation coefficients are
ρRC = −0.24, ρRA = −0.10, ρCA = 0.54.

B.4 Individual Characteristics

In general, individual characteristics do not significantly differ between CVA
and CPA, or between CVL and CPL. The treatments are also balanced with
respect to gender and the cognitive reflection test. In contrast, the elicita-
tion of attitudes toward different types of uncertainty seems to be affected
by the main experiment. Elicited attitudes differ (albeit non-significantly)
depending on whether prior to the elicitation subjects participated in the
strategic or in the non-strategic decision game. We observe less aversion in
the individual decision treatments CVL and CPL. This warrants a cautious
interpretation of the regression findings presented in model (4) and (5) of
Appendix Tables A7 to A6.

Table A11: Means of Individual Variables by Treatment

Auction Lottery Auction - Lottery
CVA CPA Diff. CVL CPL Diff. CV CP

RP -0.0090 -0.0671 0.0581 0.1512 0.0499 0.1013 0.1602 0.1170
(0.0508) (0.0659) (0.0832) (0.0586) (0.0483) (0.0776) (0.0852) (0.0816)

CRP 0.1118 0.1560 -0.0442 0.0568 0.0938 -0.0370 -0.0550 -0.0622
(0.0353) (0.0338) (0.0488) (0.0346) (0.0370) (0.0507) (0.0494) (0.0484)

AP 0.1348 0.1221 0.0127 0.0427 0.0899 -0.0473 -0.0921∗ -0.0321
(0.0343) (0.0511) (0.0615) (0.0426) (0.0422) (0.0600) (0.0547) (0.0663)

CRT 1.5385 1.3421 0.1964 1.3889 1.5 -0.1111 -0.1496 0.1579
(0.1516) (0.1612) (0.2212) (0.1638) (0.1545) (0.2252) (0.2232) (0.2233)

Male 0.5385 0.6053 -0.0668 0.4340 0.4800 -0.0460 -0.1045 -0.1253
(0.0698) (0.0804) (0.1064) (0.0688) (0.0714) (0.0991) (0.0980) (0.1074)

Note: ∗: p-value<0.1,∗∗: p-value<0.05, ∗∗∗: p-value<0.01. Robust error clustered by subject in
parentheses.
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C Non-Expected Utility Models

C.1 Salience

Figures A 4 and A 5 show the valuation of a (reduced) lottery given a specific
salience bias δ ∈ (0, 1]. A standard expected utility maximizer has δ = 1,
whereas a salience bias is more accentuated with decreasing δ. For a given
parameter δ the salience bias is always less accentuated in lottery CP.
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Figure A 4: Valuation of the lottery type 1 as a function of salience bias
δ (compared with a payoff of zero)
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Figure A 5: Valuation of the lottery type 1 as a function of salience bias
δ (compared with E[V ])

In a nutshell, although the salience bias generates different valuation of
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the lotteries, the bias always go in the same direction. Salience theory alone
would not explain why subjects overbid for CV but slightly underbid for CP
lotteries.
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