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Abstract 

This paper identifies the relationship between the age of inventors and the transmission of 

knowledge spillovers. Linking age and death information from 13,305 patent inventors that died 

prematurely to 56,700 co-inventors, I show that inventors who lose early-career collaborators 

subsequently produce 8.5% fewer patents and 17% fewer highly-cited patents than do inventors 

who lose mid-career collaborators. Spillovers peak between ages 35 and 44, and mainly accrue to 

similarly-aged partners. I explore three potential mechanisms: younger inventors may be more 

productive, they may work more interdependently with their partners, and they may hold newer 

and more relevant knowledge. 
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1. Introduction 

This paper is the first to look at how knowledge moves between inventors of different ages. 

In particular, I measure the volume of knowledge that moves from older inventors to younger 

inventors, from younger inventors to older inventors, between younger inventors, and between 

older inventors. Previous studies have looked at how the volume of knowledge flows vary with 

the age of the knowledge recipient (Azoulay, Zivin, and Wang 2010; Jaravel, Petkova, and Bell 

2018; Bernstein et al. 2022), but have not considered at how the volume varies with the age of the 

knowledge transmitter, nor the interaction between the age of the transmitter and the recipient. 

Uncovering how knowledge flows vary with transmitter age is important for several 

economic issues. First, such information could help to reconfigure teams and networks in order to 

stimulate skill development, including skill redevelopment in older workers at risk of knowledge 

obsolescence (Jaravel, Petkova, and Bell 2018; Aghion et al. 2023). Second, such information 

could delineate institutional differences between technological change and scientific advance, 

which inefficiently rewards prominent (and presumably senior) scientists (Azoulay, Zivin, and 

Wang 2010; Azoulay, Fons-Rosen, and Zivin 2019). Finally, such information would help to 

establish the extent to which long-run knowledge growth is a cumulative process. In cumulative 

models of knowledge growth, ideas do not depreciate over time. An implication is that knowledge 

is disproportionately passed down across generations of knowledge workers, from the old to the 

young (Romer 1990; Jones 2009). However, if younger inventors generate large knowledge flows, 

then knowledge growth would appear to be a disruptive process (Aghion and Howitt 1992), with 

implications for R&D productivity growth over time. 

To identify the volume of knowledge spillovers between age groups of inventors, I study 

how an inventor’s own patent production changes after experiencing the untimely loss of a 
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collaborator, using a difference-in-difference design that contrasts the effect of losing collaborators 

of different ages. I focus on knowledge transmitted through collaborative networks because these 

networks provide tangible records of intensive interaction. My analysis combines USPTO data on 

patent output and inventor collaboration together with records on the birth and death year of patent 

inventors, with information for 13,505 inventors that died prematurely (before age 60) and their 

56,700 co-inventors. 

I begin the analysis by showing that young collaborators generate more knowledge 

spillovers than do older ones. Focal inventors who lose early-career collaborators (age 20-44 at 

time of death) proceed to produce 8% fewer patents relative to inventors who lose mid-career 

collaborators (age 45-59 at time of death). This difference becomes statistically significant the year 

after the death of the collaborator and endures for twelve years. The effect size of the differential 

is larger for inventor-collaborator dyads with stronger collaborative relationships, and the effect 

size is larger when the survivor’s production of highly-cited patents is the outcome variable. 

After these initial analyses, I disaggregate the treatment effect by the age group of the 

deceased collaborator. The relationship between collaborator age and generated spillovers is U-

shaped, with the death of very young collaborators (aged 20-29 at time of death) and relatively old 

collaborators (aged 45-59 at time of death) inducing a smaller patenting decline than the death of 

moderately young collaborators (aged 30-44 at time of death). This U-shaped relationship suggests 

that very young collaborators may lack sufficient experience and knowledge to generate a high 

volume of spillovers (Jones 2010), while older collaborators may lack knowledge of recently-

developed ideas that are useful for generating new inventions in their contemporary technological 

and economic environments (Aghion et al. 2023; Esposito and Wouden 2022). Therefore, 

knowledge growth appears to occur through processes of both accumulation and depreciation. 
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I go on to decompose the treatment effects by the age of both the deceased collaborator 

and the focal inventor at the time of the collaborators’ death. This decomposition shows that the 

greatest quantity of spillovers flow from collaborators in their 30s to inventors in their 30s. In 

addition, more spillovers flow from younger inventors to older inventors (i.e. from collaborators 

in their 30s to co-inventors in their 40s) than the other way around. These results demonstrate that 

junior inventors are at the forefront of driving the social learning process. 

Finally, I explore three potential mechanisms for the main finding that junior collaborators 

generate more spillovers than mid-career collaborators. The first potential mechanism is 

differences in productivity. Inventors’ patenting output peaks at a relatively young age, which 

could create patenting spillovers that are not related to knowledge transmission (Kaltenberg, Jaffe, 

and Lachman 2023). The second is collaborator interdependence. Inventors may have more 

interdependent relationships with their junior collaborators, either because of greater knowledge 

complementarities, or because of a larger incentive to invest in relationship-building with young 

collaborators due to the potentially longer time horizon of the relationship (Jaravel, Petkova, and 

Bell 2018). The third is human capital relevance. Younger inventors have recently-vintaged human 

capital, which may be more useful for producing patentable technologies in the current 

technological environment. To explore these mechanisms, I decompose the main effect by 

collaborators’ pre-death patenting productivity, the intensity of the collaborative pair’s co-

patenting activity, and two variables that capture the recency and relevance of the deceased 

collaborator’s human capital: their human capital vintage (measured by the age of the citations on 

their patents), and the “fertility” of their human capital for creating subsequent inventions 

(measured by the number of additional patents that cite the same patents that their own patents 

cite).  
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My decomposition exercise generates no evidence that the greater spillovers produced by 

junior collaborators is driven by sheer differences in productivity or by more interdependent 

relationships. On the other contrary, the recent vintage and high fertility of junior collaborators’ 

knowledge is more powerful in explaining why junior collaborators generate more spillovers than 

do senior collaborators. 

An implication of these findings is that younger collaborators should be particularly 

important sources of knowledge spillovers in fast-advancing knowledge fields, where the 

knowledge frontier is quickly expanding and the set of ideas that are most useful for creating new 

technologies changes quickly. I test this proposition in Appendix A4, where I measure the rate 

advance of each knowledge field by the average age of the citations made in those fields. I find 

that differential in the spillovers generated by junior collaborators is larger in fast-advancing 

knowledge fields. Finally, if young collaborators transmit new-to-the-world ideas to their partners, 

then inventors who lose younger collaborators should also lose access to these new-to-the-world 

ideas. I also test this prediction in Appendix A4, where I show that inventors who lose junior 

collaborators proceed to cite older patents than they would have otherwise. 

Analytically, this study most closely resembles the work of Jaravel, Petkova, and Bell 

(2018), Balsmeier, Fleming, and Lück (2023), Oettl (2012), and Azoulay, Graff-Zivin, and Wang 

(2010), which use the premature deaths of inventors and scientists to identify knowledge spillovers 

generated by the deceased. A distinguishing feature of this paper is its focus on heterogeneous 

treatment effects, in particular the differential spillovers of collaborators based on their biological 

age. Therefore, the difference-in-difference term of interest is the contrast between the impact of 

losing a junior collaborator from that of losing an older collaborator. This contrast raises a question 

of whether inventors who lose mid-career collaborators are appropriate counterfactuals for 
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inventors who lose early-career collaborators. I take three steps to address this. First, I show pre-

trend analyses demonstrating that inventors who lose early-career collaborators to premature 

deaths have parallel pre-trends to inventors who lose mid-career collaborators (Figure 1). Second, 

I show that collaborators’ pre-death patenting productivity does not explain differences in the 

knowledge spillovers generated by junior collaborators (Table 2). Third, I demonstrate that 

collaborators who die early in their careers have similar career patenting profiles as those who die 

in their mid-careers, except at very young ages. I further show that dropping collaborators that died 

at a very young age does not materially change the results (Figure A5). 

Finally, because the treatment events are staggered, two-way fixed effects estimates can be 

biased by phased-in treatment effects (Baker, Larcker, and Wang 2022). The difference-in-

difference framework I use, which conducts a within-event-time contrast between inventors who 

lose junior and mid-career collaborators, does not resolve this issue because biased estimates from 

the phase-in treatment effects can load onto the first-difference estimator and the individual and 

time fixed effects, similar to the bias introduced by staggered treatments in triple-difference 

designs (Strezhnev 2023). Therefore, in Appendix B, I develop a stacked regression that omits 

prohibited contrasts. I find that the results of the stacked regression are not meaningfully different 

from the two-way fixed effect estimates presented in the main text. 

In the following sections, I introduce the data sources, describe the methods, present the 

results, and discuss the implications of the findings. 

 

2. Data and Methods 

I collect patent data from two sources. The first source is PatentsView, from which I collect 

the set of all utility patents granted by the U.S. Patent and Trademark Office between 1976 and 
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2020. These data patent ID numbers, current CPC classification information codes (at the class 

level, for which there are 123 classes), front-page patent citations records, disambiguated inventor 

IDs, and patent application year information. Because PatentsView lacks inventor, application, 

and citation information for patents granted before 1976, I restrict the study to patents applied for 

in 1976 or later. In addition, because I use forward citation counts to identify high-impact 

inventions, and because citations accumulate over time, I restrict the sample to patents which were 

applied for no later than 2013. This cutoff allows for 7 years for patent applications to be granted 

and receive citations. I use 5-year windows to count the forward citations received by patents, and 

I define “high impact” patents as those in the top quartile of their grant year and CPC technology 

class in terms of their number of citations received. 

My second data source are records on the year of birth and year of death records for 1.9 

million inventors recently made available by Kaltenberg, Jaffe, and Lachman (2023). The records 

were compiled by scraping three websites that aggregate birth and death records for the general 

population, and by matching them to USPTO patent inventors by name and residential location. 

The data collection procedures and descriptive statistics are shared in Kaltenberg, Jaffe, and 

Lachman (2023) and in a 2021 working paper (Kaltenberg, Jaffe, and Lachman 2021). In Appendix 

A1 of this paper, I describe steps I take to clean the data and to match inventors to their deceased 

collaborators. The Kaltenberg, Jaffe, and Lachman (2023) data have been used by Balsmeier, 

Fleming, and Lück (2023) to analyze how premature deaths affect the geographic spillovers of 

patent citations, but to my knowledge have not been used to analyze how the externalities 

generated by patent collaborators vary by the age of the deceased collaborator.  

Finally, to compute inventors’ patenting productivity, I count the number of total patents 

and high-impact patents invented by each inventor in each year. Inventors’ patenting careers span 
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from their first recorded patent to their final patent. I include interim years with zero patents in the 

dataset. I do not down-weight inventors’ patents if they were co-invented by two or more inventors. 

The average patent was co-invented by 1.8 co-inventors, suggesting that inventors tend to 

contribute substantially to each patent on which they are listed as inventors.  

Following the data construction, my dataset contains 56,700 focal inventors and 13,305 

collaborators that died prematurely. I provide summary statistics in Appendix A1. The summary 

statistics show considerable variation in the age of surviving and deceased inventors, with the 25th 

and 75th percentiles of surviving inventor age at time of collaborator death ranging from 39 to 55 

years and the associated figures for the age of deceased collaborators ranging from 43 to 55 years. 

Because senior deceased inventors (those that die at age 60 or above) are omitted from the data, 

the distribution of age at collaborator death is capped at a value of 59. In terms of career length 

and patent production, the 25th and 75th percentiles of surviving inventors had careers that lasted 

7 to 22 years, during which they produced 4 to 22 patents. 

 

3. Empirical Analysis 

3.1 Main Effects 

 

To estimate the effect of the age at time of death of the collaborator on a surviving co-

inventor’s patenting productivity, I estimate the difference-in-difference model described by 

Equation 1: 

(1)   𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖,𝑡

= exp[β0𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 + β1𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡

∗ 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 + 𝛼𝑖 + 𝜏𝑚𝑜𝑑𝑎𝑙𝑓𝑖𝑒𝑙𝑑∗𝑡 + ε𝑖,𝑡] 
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In Equation 1, 𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖,𝑡 is the number of patents produced by focal inventor i in the 

application year t and 𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 is a binary variable that equals 0 for the 10 years before 

the year of the collaborator’s death and equals 1 for the 10 years following the collaborator’s death.  

𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 is a binary variable that equals 1 if the deceased collaborator was 

between ages 20 and 44 at the time of death and equals 0 if the deceased collaborator was between 

ages 45 and 59 at time of death. As discussed in the data section, I omit all collaborator deaths 

where the collaborator died outside ages 20-59 because such deaths may have been easier to 

anticipate and thus endogenous to the dependent variable. 𝛼𝑖 are inventor fixed effects. Because 

the 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 term is constant within inventors, its base term is subsumed into the 

𝛼𝑖 fixed effects and so it only appears as an interaction in the model. 𝜏𝑓∗𝑡 are fixed effects for a 

surviving inventors’ modal CPC technological class, defined as the most frequent technology class 

assigned to each inventor’s patents, interacted with year indicators. There are 123 unique CPC 

classes at this level of aggregation. Because the 𝜏𝑓∗𝑡 fixed effects contain unique intercepts for 

each year, inventor age effects (which are collinear with the inventor and year-specific fixed effect 

terms) are projected out of the variation in the dependent variable. Therefore, the remaining 

variation that may load onto the β0 and β1 coefficient terms is deflated for the mean values of 

surviving inventors, class*year pairs, and the linear trends within inventors (Hall, Mairesse, and 

Turner 2005). Because the dependent variable is a count variable, I estimate Equation 1 using a 

Poisson Quasi-Maximum Likelihood estimator.  

I additionally test whether the loss of a collaborator and a junior collaborator causes a 

decline in a surviving inventor’s rate of producing high-impact patents. High impact patents are 

defined as those in the top quartile of their grant year and CPC class. Finally, the effect of losing 

a collaborator is likely to be stronger for inventors that lose repeat collaborators with whom they 
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have developed stronger relationships (Jaravel, Petkova, and Bell 2018). Therefore, I also run the 

model after restricting the dataset to inventor-collaborator pairs that co-invented two or more 

patents in the five years leading up to the collaborator’s death. 

Regression results for Equation 1 are shown in Table 1. The first column shows that β0 =

−0.448, indicating that inventors produce 𝑒−0.448 − 1 = 36% fewer patents per year following 

the death of a collaborator. The coefficient on the interaction term β1 is -0.0898, indicating that 

inventors that lose junior collaborators subsequently produce 8.6% fewer patents per year than 

surviving inventors that lose mid-career collaborators. The qualitative significance of this effect 

size can be interpreted by considering that the median surviving inventor in the dataset produces 

9 patents over the course of a 13-year career. The second column of Table 1 shows that the effects 

on high-impact patenting are larger compared to those on overall patenting. Inventors who lose a 

collaborator prematurely proceed to produce 33% fewer high-impact patents per year, and those 

who lose junior collaborators proceed to produce an additional 13% fewer high-impact patents. 

Thus, early-career collaborators even more important for high-impact patenting than they are for 

overall patenting. 

As expected, the effect sizes are larger in the models that only consider repeat collaborators. 

An inventor who loses an early-career repeat collaborator proceeds to produce 16% fewer patents 

per year than do inventors who lose repeat mid-career collaborators (column 3). The effect size on 

high-impact patenting is also larger for the loss of a repeat early-career collaborator than for the 

full set of early-career collaborators (column 4). 
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Table 1: Fixed Effect Quasi-Poisson Estimates of Loss of Junior Collaborator on Patenting  

 All Collaborators Repeat Collaborators 

 
Total  

Patenting 

High-Impact 

Patenting 

Total  

Patenting 

High-Impact 

Patenting 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 
-0.448*** 

(0.0248) 

-0.400*** 

(0.0378) 

-0.579*** 

(0.0422) 

-0.513*** 

(0.0629) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡

∗ 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 

-0.0898** 

(0.0399) 

-0.141*** 

(0.0522) 

-0.174*** 

(0.0613) 

-0.198** 

(0.0808) 

Inventor and Class*Year 

Fixed Effects? 
Y Y Y Y 

Inventor*Year Obs 296,901 209,204 96,604 74,041 

Inventor Obs 40,129 22,900 11,599 8,038 

Notes: The table presents regression estimates for Equation 1. Junior deceased collaborators are defined 

as those that die between ages 20 and 45. The reference set of deceased collaborators are those that die 

between ages 46 and 59. Repeat collaborators are those which surviving inventors co-invented 2+ patents. 

 

Next, I explore the dynamics of the treatment effect by estimating the regression model 

described by estimating the model with a set of 15 forward and 15 backward lags to the treatment 

event. Because these lag variables are perfectly colinear with the inventor and year fixed effects, 

the base terms of these lags (without the interaction with 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖) cannot be 

estimated (Hall, Mairesse, and Turner 2005). The regression is described by Equation 2: 

 

(2)   𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖𝑡 = exp [ ∑ β𝜏𝑌𝑒𝑎𝑟𝑠𝑇𝑜𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡
𝜏

15

𝜏=−15

∗ 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 + 𝛼𝑖 + 𝜏𝑚𝑜𝑑𝑎𝑙𝑓𝑖𝑒𝑙𝑑∗𝑡

+ ε𝑖𝑡] 
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I plot the resulting coefficients and their 95% confidence intervals in Figure 1. There are 

no obvious pre-trends in the data. The negative relationship between losing a junior begins one 

year after a collaborator death, becomes statistically significant after 7 years, and continues for 13 

years following the collaborator death. In both charts, the effect size is at its maximum 10-12 years 

following a collaborator’s death. The effect dissipates 13-15 years after the collaborator death. The 

effect sizes are about twice as large for high-impact patenting and for inventors who lose repeat 

collaborators. In Appendix A2, I show that the results are similar when a stacked regression is 

used. Therefore, the results in Figure 1 are not driven by potential contamination from 

heterogeneous treatment effects in the staggered design. 

The time dynamics of the treatment effects in Figure 1 provide some suggestions as to 

mechanisms. In particular, the full impact is not felt until 10 years after the loss of a junior 

collaborator, suggesting that the loss of junior collaborators affects focal inventors’ productivity 

not by disrupting existing projects, but by slowing down the initiation of new projects or by 

reducing networking and learning opportunities. In this regard, it is important to keep in mind that 

the coefficients show the differential effect of losing a junior collaborator relative to a mid-career 

collaborator. Losing both types of collaborators may impact surviving inventors equally in the 

short term (1-5 years) by interrupting ongoing projects (Jaravel, Petkova, and Bell 2018), while in 

the longer run (6-12 years), the impact of losing a junior collaborator is greater, possibly because 

the junior collaborator provided access to networking or learning opportunities that would have 

taken several years to mature.  
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Figure 1: Change in Patenting Productivity Following Death of Junior Collaborator 

Relative to Mid-Career Collaborator 

 Effect on Overall Patents per Year Effect on Highly-Cited Patents per Year 
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Notes: Figures shows coefficients associated with losing an early-career collaborator (age 20-44 at time 

of death) relative to losing a mid-career collaborator (aged 45-59 at death). All models include focal 

inventor and year*technology class fixed effects. Standard errors are clustered at the deceased 

collaborator.  

 

 

3.2 Effects by Collaborator Age 

 

To identify the specific age at time of death of a collaborator that has the largest effect on 

the subsequent patenting of a focal inventor, inventor, I estimate a regression model described by 

Equation 3:  

 



 

 14 

(3) 𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖,𝑡 = exp[β0𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 + ∑ β𝑚𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗59
𝑚=20

𝐴𝑔𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝐴𝑡𝐷𝑒𝑎𝑡ℎ
𝑖
𝑚 + 𝛼𝑖 + 𝜏𝑚𝑜𝑑𝑎𝑙𝑓𝑖𝑒𝑙𝑑∗𝑡 + ε𝑖,𝑡] 

 

In Equation 3, patenting productivity is a function of 𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡, which records 

a value of 0 for the 10 years leading up to the death of the collaborator and 1 for the 10 years after, 

and the interaction term 𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗ 𝐴𝑔𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝐴𝑡𝐷𝑒𝑎𝑡ℎ
𝑖
𝑚. The second variable of the 

interaction term, 𝐴𝑔𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝐴𝑡𝐷𝑒𝑎𝑡ℎ𝑖
𝑐, records the age of the collaborator at time of death. Because 

of the relatively small number of observations of collaborator deaths at each specific age, I group 

𝐴𝑔𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝐴𝑡𝐷𝑒𝑎𝑡ℎ𝑖
𝑚 into 5-year bins: 20-24 years old, 25-29 years old, and so on, up to the 

reference group of collaborators that die between ages 55 and 59. I plot the β𝑛 coefficients and 

their 95% confidence intervals in Figure 2. 

Figure 2 shows that collaborator age at time of death has a U-shaped relationship with the 

subsequent patenting productivity of the focal inventor. Very young collaborators (aged 20-29 at 

death) generate no more spillovers do older collaborators (aged 45-59 at death). The greatest 

spillovers are generated by collaborators between the ages of 30 and 44. This U-shaped 

relationship is more pronounced for high-impact patenting than for patenting overall, and for 

inventors who lose repeat collaborators. The U-shaped relationship suggests that both experience 

(Jones 2010) and knowledge obsolescence (Aghion et al. 2023) may play important roles in 

determining the quantity of spillovers that collaborators generate. 
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Figure 2: Change in Patenting Productivity by Collaborator Age at Death 
 Effect on Overall Patents per Year Effect on Highly-Cited Patents per Year 
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Notes: Figures show the differential effect of losing a collaborator at a specific age at of death relative time 

(grouped into 5 year bins) to losing a collaborator aged 55-59 at time of death on patenting output. 

 

3.3 Effects by Collaborator Age 

 

I now analyze age at which focal inventors are most affected by the loss of collaborators 

of different ages. I do so by estimating Equation 4 using a Quasi-Poisson: 

 

(4) 𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖𝑡 = exp[β0𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 + ∑ ∑ β𝑚𝑛𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗59
𝑛=20

59
𝑚=20

𝐴𝑔𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝐴𝑡𝐷𝑒𝑎𝑡ℎ
𝑖
𝑚 ∗ 𝐴𝑔𝑒𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝐴𝑡𝐷𝑒𝑎𝑡ℎ

𝑖
𝑛 + 𝛼𝑖 + 𝜏𝑚𝑜𝑑𝑎𝑙𝑓𝑖𝑒𝑙𝑑∗𝑡 + ε𝑖𝑡] 
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The coefficient matrix β
𝑚𝑛

 records the change in patenting productivity for inventors at 

age n at the time of death of their collaborators at age m. Because the pairwise disaggregation leads 

to relatively few observations in any pairwise cell, I aggregate inventors to 10-year age based on 

their age at time of collaborators’ deaths. The reference group in the regression are inventors aged 

50-59 at the time of death the death of their collaborator, when the collaborator also dies in the 50-

59 age group. I estimate Equation 3 for overall patenting, high-impact patenting, and for inventors 

who lose repeat collaborators and plot heat maps of the β
𝑚𝑛

 coefficient matrix in Figure 3. Deeper 

red indicates larger negative coefficients, and thus greater spillovers. Asterisks are placed in the 

cells of the heatmaps for values with coefficients that are statistically different from 0. 

If patenting spillovers primarily flowed from older collaborators to their younger co-

inventors, then the bottom-right triangles of each of the heatmaps in Figure 3 would be shaded in 

deep red. However, this is not the case. Instead, the most consistently negative and significant 

coefficient across the four panels of the figure is associated with inventors in their 30s who lose 

collaborators in their 30s. In addition, the top-left triangle of each heatmap is more deeply shaded 

in red than the bottom-right triangle, and in the fourth panel of the figure, the coefficient associated 

with inventors in their 40s who lose collaborators in their 30s is statistically different from 0. This 

asymmetry shows that more patenting spillovers flow from younger collaborators to older 

inventors than from the old to the young.  



 

 17 

Figure 3: Change in Highly-Cited Patent Productivity Following Death of a Collaborator 

 Effect on Total Patent Production Effect on Highly-Cited Patent Production 
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Notes: Heatmaps show the change in patent productivity of surviving inventors following a collaborator’s 

premature death, broken outs by inventor age at time of collaborator death and collaborator age at time of 

death. Dyads with surviving inventors aged 50-59 at the time of death and collaborators aged 50-59 are 

the reference group. Asterisks indicate statistical significance (*** p < 0.01; ** p < 0.05; * p < 0.01). 
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3.4 Mechanisms 

The literature suggests three potential explanations for why early-career inventors generate 

more patenting spillovers than do older inventors. The first is that early-career inventors may be 

more productive, and thus the spillovers detected by the earlier models may not reflect knowledge 

transmission. The second potential mechanism is team interdependence. The intensity of 

collaboration is heterogenous across dyads of collaborators. This heterogeneity is plausibly 

correlated with the age of collaborators, because the incentive to invest in building strong 

collaborative relationships with junior inventors could be larger due to their longer expected 

careers (Jaravel, Petkova, and Bell 2018). The third potential mechanism is knowledge 

obsolescence. Younger inventors have more recently-vintaged human capital, which may be 

better-oriented for innovating in the current knowledge environment (Aghion et al. 2023; Esposito 

and Wouden 2022).  

To test these mechanisms, I decompose the main effect of the loss of a junior collaborator 

on subsequent patent output using five key variables. The first variable is collaborator’s pre-

collaborator-death patenting productivity, which captures the intensity of the labor that inventors 

contribute to their teams. The second variable is the number of co-patents produced by the focal 

inventor and the deceased collaborator before the collaborator’s death. To ensure that this variable 

isolates a dyad’s collaboration intensity from the surviving inventor’s patent production, I include 

a third control variable, the number of patents produced the focal inventor before the collaborator’s 

death, in the regression.2 The fourth variable is the collaborators’ pre-death human capital vintage, 

which indicates whether collaborators have knowledge of new-to-the-world ideas. I measure 

 
2 By including the focal inventor’s pre-collaborator-death patent output in the regression, the number of co-patents 

produced by the focal inventor and the deceased collaborator is interpreted as the intensity of the collaborative 

relationship. A co-patent share variable is unnecessary because the numerator and denominator of a such a variable 

are already included as separate terms.   
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collaborator’s human capital vintage as the mean age of the citations on their patents in the three 

years leading up to their death. Inventors whose patents cite more recent patents are determined to 

have more recently-vintaged human capital. The fifth term is collaborators’ pre-death human 

capital “fertility”, which indicates whether a collaborator has knowledge of ideas that can be used 

to make many subsequent inventions. I measure a collaborator’s knowledge fertility as the mean 

number of additional patents that cite the same patents cited by a collaborator in the three years 

before the collaborator’s death.3 Inventors that cite patents that can be leveraged to produce many 

more patents possess highly fertile knowledge. Together, these five variables test whether the 

greater spillovers generated by junior collaborators are driven by potential differences in 

productivity, collaborative relationship intensity, or human capital recency and relevance. 

The difference-in-difference model with six second-difference terms is given by Equation 

5. The model contains the base term, 𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡, and interactions between this variable 

and the decomposition terms 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖, 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖, 

𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖, 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖, 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑙𝑙𝑎𝑏𝐶𝑖𝑡𝑒𝐴𝑔𝑒𝑖, and 

𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑙𝑙𝑎𝑏𝐶𝑖𝑡𝑒𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑖. Because collaborators’ pre-death mean citation age is strongly 

right-skewed, I take the variable’s natural log. I also multiply the variable by -1, so higher values 

indicate more recently-vintaged human capital. Finally, to isolate knowledge fertility from 

calendar year effects, I standardize collaborators’ knowledge fertility by the calendar year of their 

patent applications. This standardization controls for a possible mechanical relationship where 

inventors that cite older patents could appear to have more fertile knowledge, because the older 

 
3 For example, assume an inventor dies in 2000 produced one patent (Patent A) in the three years before death.  

Patent A cites two earlier patents, Patent α and Patent β. By 2000, Patent α was cited by 10 other patents, and Patent 

β was cited by 20 other patents. In this case, the inventors’ knowledge fertility is 15, because on average 15 other 

patents drew knowledge from the patents that the inventor drew knowledge from. 
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patents that they cite have had more time to accumulate citations. I estimate the model with 

individual and field*year fixed effects using a Quasi-Poisson.  

 

(5) 𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖,𝑡 = exp[β0𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 + β1𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗

𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 + β2𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗ 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖 +

β3𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗ 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖 + β4𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗

𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖 + β5(𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗ log(𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑖𝑡𝑒𝐴𝑔𝑒)𝑖 ∗ −1) +

β6𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗ 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑜𝑙𝑙𝑎𝑏𝐶𝑖𝑡𝑒𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝛼𝑖 + 𝜏𝑓𝑡 + ε𝑖𝑡] 

 

In Table 2, I show Estimates for surviving inventors’ overall patent output in Panel A, and 

estimates for surviving inventors’ high-impact patent output in Panel B. The first column shows 

the relationship between collaborator biological age and subsequent productivity of the survivor, 

the second column tests the collaborator productivity hypothesis, the third column tests the 

relationship intensity hypothesis, the fourth column tests the collaborator human capital recency 

hypothesis, and the fifth column includes all 6 interaction terms in a “horse race” model. 
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Table 2: Fixed Effect Quasi-Poisson Estimates of Mechanisms for Patenting Decline 

Panel A: Effects on Overall Patent 

Production of Surviving Inventor 
Mechanism Tested by Model 

 
Biological Age 

Collaborator 

Productivity 

Collaborative 

Relationship 

Intensity 

Collaborator 

Knowledge 

Relevance 

Horse Race 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡  
-0.453*** 

(0.0255) 

-0.463*** 

(0.0269) 

-0.413*** 

(0.0341) 

-0.716*** 

(0.114) 

-0.621*** 

(0.109) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 

-0.0878** 

(0.0398) 

-0.0864** 

(0.0395) 

-0.0774** 

(0.0387) 

-0.0630 

(0.0455) 

-0.0468 

(0.0436) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ 𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖 
 

0.00133 

(0.00132) 
  

0.00177 

(0.00151) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ PreCollabDeathCoinventedPatents𝑖 
  

0.00591 

(0.00738) 
 

0.00383 

(0.00806) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ PreCollabDeathPatents𝑖 
  

-0.00294*** 

(0.000862) 
 

-0.00312*** 

(0.000933) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ 𝐿𝑜𝑔𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑖𝑡𝑒𝐴𝑔𝑒𝑖 ∗ −1 
   

-0.0912** 

(0.0421) 

-0.0659* 

(0.0394) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡

∗ 𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑖 
 

 

 
 

-0.0570*** 

(0.0201) 

-0.0637*** 

(0.0201) 

Inventor + Class*Year Fixed Effects? Y Y Y Y Y 

Inventor*Year Observations 292,856 292,856 292,856 220,312 220,312 

Inventor Observations 33,051 33,051 33,051 24,367 24,367 
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Table 2 (continued) 

Panel B: Effects on High-Impact 

Patent Production of Surviving 

Inventor 

Mechanism Tested by Model 

 Biological Age 
Collaborator 

Productivity 

Collaborative 

Relationship 

Intensity  

Collaborator 

Knowledge 

Relevance 

Horse Race 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 
-0.411*** 

(0.0376) 

-0.406*** 

(0.0377) 

-0.349*** 

(0.052) 

-0.706*** 

(0.141) 

-0.627*** 

(0.144) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 

-0.136*** 

(0.0503) 

-0.136*** 

(0.0503) 

-0.131** 

(0.0509) 

-0.0854 

(0.0560) 

-0.0741 

(0.0562) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ 𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖 
 

0.000626 

(0.000666) 
  

0.00156 

(0.00132) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ PreDeathCoinventedPatents𝑖 
  

-0.00230 

(0.00747) 
 

-0.000728 

(0.00700) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ PreDeathPatents𝑖 
  

-0.00276** 

(0.00128) 
 

-0.00308** 

(0.000134) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 

∗ 𝐿𝑜𝑔𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐶𝑖𝑡𝑒𝐴𝑔𝑒𝑖 ∗ −1 
   

-0.106** 

(0.0533) 

-0.0925* 

(0.0537) 

𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡

∗ 𝐶𝑜𝑙𝑙𝑎𝑏𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑖 
 

 

 
 

-0.136*** 

(0.0314) 

-0.133*** 

(0.0327) 

Inventor + Class*Year Fixed Effects? Y Y Y Y Y 

Inventor*Year Observations 212,070 212,070 212,070 161,411 161,411 

Inventor Observations 21,446 21,446 21,446 16,031 16,031 

Notes: The table presents regression estimates for Eq. 5. Panel A shows effects for overall patent output of 

survivors; Panel B shows effects on high-impact patents (top-25% cited within-year). Junior deceased 

collaborators are those that died age 20 to 45. The reference set are those that died age 46 to 59. Collaborator 

pre-death productivity is the count of patents produced in the three years leading up to their death, pre-death 

knowledge age is the mean age of the citations made in their patents in the three years pre-death, and pre-

death knowledge fertility is the mean number of patents that cite the same patents cited by their pre-death 

patents. Mean knowledge fertility is standardized by the application year of the cited patents to remove 

temporal effects. Focal inventor pre-death patents is the number of patents produced by the focal inventor in 

the 5 years pre-death, and pre-death coinvented patents is the number of patents co-invented by the survivor 

and deceased collaborator in the 5 years pre-death. 
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 Table 2 shows that the recency and relevance of junior collaborator’s knowledge is the 

strongest predictor of the treatment effect. The coefficient on the biological of the collaborator 

shrinks and loses significance when the collaborator’s citation age and fertility are included in the 

model. In addition, both of these terms are negative and significantly associated with the treatment 

outcomes of overall patenting (Panel A) and high-impact patenting (Panel B).  

 Table 2 does not generate evidence in support of the collaborator productivity nor the  

relationship intensity mechanisms. The variable measuring a collaborator’s pre-death patenting 

productivity is statistically insignificant and the coefficient size is small (exponentiating the 

coefficient indicates that survivors produce 0.1% fewer patents for each additional pre-death patent 

produced by their deceased collaborators). The coefficient on the dyad’s number of co-invented 

patents is also small and significant, indicating that survivors who lose collaborators with whom 

they had more intensive pre-death collaborative relationships do not suffer larger patenting 

declines, once the biological age of the collaborator is controlled for. The inclusion of the control 

variable for the number of patents produced by the survivor in the years leading up to the 

collaborator’s death implies that the co-patents variable should be interpreted as the effect of the 

relationship’s intensity; a co-patent share variable would be redundant.  

Finally, the horse race model, which includes all 6 interaction terms, affirms the predictive 

strength of the collaborator’s citation age and knowledge fertility. In the horse race model, both 

terms are significant and negative (albeit at the 90% level for citation age), the terms associated 

with the collaborator productivity and collaborative intensity mechanisms are insignificant, and 

the coefficient on biological age is insignificant.  



 

 24 

An implication of the findings from Table 2 is that the differential in spillovers generated 

by junior collaborators may be greater for inventors that work in fast-moving knowledge fields, 

where knowledge of new-to-the-world ideas could be particularly valuable. In Appendix A4, I 

present evidence in support for this hypothesis. In addition, in the same appendix, I show that 

inventors who lose junior collaborators proceed to cite older knowledge. This latter result suggests 

that the loss of a junior collaborator impedes the survivor from learning new-to-the-world 

technological ideas.  

 

Discussion 

This paper studied the relationship between the age of inventors and the spillovers that they 

absorb and generate, using the premature deaths as an exogenous shock to inventors’ collaborative 

networks. Data on the birth and death years of inventors were merged to patent data to identify the 

age at which inventors generate the greatest spillovers, the age groups to whom those spillovers 

accrue, and potential mechanisms regarding inventors’ productivity, relationship intensity, and 

knowledge recency and usefulness.  

The results show that early-career collaborators generate more spillovers than mid-career 

collaborators, with spillovers peaking between the age 30 and 44, and that these spillovers accrue 

mostly to similarly-young partners. There was no evidence that knowledge transmission is passed 

down from older generations to younger ones. Evidence was found that knowledge is transmitted 

“up” across generations, in reverse-intergenerational knowledge spillovers; however, this channel 

was weak. Finally, the differential effect of the death of an early-career collaborator was most 

strongly predicted by the type of knowledge that young collaborators know: young collaborators 

tend to know more recently-developed ideas that are particularly useful for generating new 
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inventions in the current economic environment. When an inventor loses a young collaborator to 

a premature death, their ability to access new ideas diminishes, 

These findings speak to research on skill redevelopment for knowledge workers, the 

institutional differences between science and technological innovation, and the process of long-

run knowledge growth. A central objective in skill redevelopment is the transmission of new skills 

to older workers (Aghion et al. 2023). Unfortunately, the results of this study show that older 

inventors’ patenting output is only minimally affected by the presence (or disappearance) of 

collaborators of any age, with the implication that reverse-intergenerational spillovers may be 

insufficiently powerful to instigate meaningful skill redevelopment, in the absence of broader 

institutional or behavioral changes.  

With regard to institutional differences between science and technological innovation, 

junior collaborators were shown to generate more spillovers for patent production than mid-career 

collaborators. A similar test of the effect of collaborator age at death has not been carried out for 

scientists, but it is plausible that that junior scientists may not generate greater publication 

spillovers than older scientists,  because of the friction that preeminent scientists exert against the 

introduction of new ideas to their fields (Azoulay, Zivin, and Wang 2010; Azoulay, Fons-Rosen, 

and Zivin 2019). Relative to science, in technology market-based competition may be stronger, 

which allows young inventors to diffuse their novelties more readily.  

Finally, with regard to long-run knowledge growth, the larger spillovers generated by 

younger collaborators, and in particular collaborators with recently-vintaged human capital, 

suggests that the value of ideas depreciates over time (Aghion and Howitt 1992). Knowledge 

depreciation is not considered in canonical models of endogenous growth (Romer 1990; Jones 

2009; 2010), with the implication they may overstate the size of the stock of knowledge in the 
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economy, as well as the educational burden associated with bringing new generations of inventors 

to the research frontier.  
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A1) Data Construction 

 In this section, I describe steps taken to clean the data on inventor birth and death 

information and to link inventors to their deceased collaborators. 

The Kaltenberg, Jaffe, and Lachman (2023) dataset contains birth and death records that 

have varying likelihoods of being accurate. Because their data matches inventors to online-scraped 

records and patent data by inventor name and residential location, inventors that have patented 

while living in different places may contain multiple records in their dataset. In addition, the raw 

scraped records contain errors, and the match between the scraped data and the patent data can 

falsely link individuals. To help to alleviate these problems, Kaltenberg, Jaffe, and Lachman 

(2023) score the probable accuracy of each record in their dataset using a points-based system. In 

addition, as Kaltenberg, Jaffe, and Lachman (2023) note, the scraped death records often contain 

information on deceased inventors’ year of birth. If an inventor’s birth and death records list the 

same year of birth, then both records are more likely to be accurate. Thus, to create a dataset of 

inventor births and deaths birth with the highest possible accuracy, I follow the following rules. 

First, I omit all birth records with accuracy scores of 0. Second, for each unique inventor, I keep 

only the birth record (year of birth) with the highest accuracy score. Third, I omit all death records 

with accuracy scores of 0. Fourth, for each inventor, I keep only the death records (year of death) 

with the highest accuracy score. Fifth, I keep only the death records that (a) contain birth years, 

and (b) can be matched to a birth record with birth year within 2 years of the death record’s birth 

year. Following these steps, I am left with 1,309,669 “high confidence” inventor birth years and 

125,338 “high confidence” inventor death years.  

To link inventors to their deceased collaborators, I first identify each inventor that died 

between 20 and 59 years old. There are 38,997 such premature deceased collaborators (indexed by 

c). Finally, to remove right-truncation in focal inventors’ high-impact patenting (patents must be 

created before they can be cited), I analyze patents from 1976-2013. This brings the number of 

premature deaths in the dataset to 13,305. 

To identify the focal inventors i that co-invented a patent with each of the deceased 

collaborators, I record each inventor that co-invented a patent with each deceased collaborator 

within 5 years of the collaborator’s death. I use a 5-year cutoff to exclude older collaborations 

because they may not be associated with active relationships. Moreover, a 5-year cutoff is the norm 

used in academia to define active collaborations and thus potential conflicts of interest when 
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requesting reviewers for a journal submission. I use the most recent collaboration between an 

inventor and a collaborator when computing this time lag. For example, I include an inventor-

collaborator pair in the dataset if they collaborated twice during their careers, 7 years before and 3 

years before the collaborator’s death. In Appendix Figure A1, I show that the general results are 

robust to excluding collaborators that die between ages 55 and 59, and in Appendix Figure A2, I 

show that the main results are robust to using a 3-year cutoff value when identifying inventors’ 

collaborators. 

An inventor i can experience multiple premature deaths of collaborators c during her or his 

career. In such cases, I omit all deaths of collaborators c after the first experienced by an inventor 

i. In addition, inventors that co-invent with deceased collaborators can also die during the study 

timeframe. In this case, I keep the focal inventors i in the dataset up to the year of their death.  

 

Table A1: Descriptive Statistics 

 Quantile 

Variable 25% 50% 75% 

Surviving Inventor Birth Year 1952 1961 1969 

Surviving Inventor Cohort Year 1991 1998 2004 

Surviving Inventor Career Length (Years) 7 14 22 

Surviving Inventor Total Patents 4 9 22 

Surviving Inventor Total Top Quartile Patents 1 2 7 

Surviving Inventor Age at Collaborator Death 39 46 55 

Year of Collaborator Death 2004 2009 2013 

Age of Collaborator at Death 43 50 55 

Age of Collaborator References at Death 9 13 18 

Fertility of Collaborator References at Death 11 20 38 

Note: Summary statistics are for 56,700 focal inventors that created two or more patents applied for 

between 1976 and 2013 and lost a collaborator of age 20-59 to a premature death. There were 13,305 

inventors that died between these ages during the study period. 
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A2) Stacked Regression 

 In this section, I develop a stacked regression to test for robustness after removing any 

“prohibited comparisons” from the staggered difference-in-difference regression model. Standard 

two-way fixed effects difference-in-difference models with staggered treatments can violate the 

diff-in-diff assumption of parallel trends when the treatment effect is nonconstant over time, 

because recently treated units are used as comparison groups before the full treatment effect has 

taken time to stabilize. Stacked regressions can eliminate these prohibited comparisons by setting 

time windows around each treatment event to omit comparison groups shortly before or after each 

treatment event. 

 

I follow the general outline of Cengiz et al. (2019) to develop the data stack. First, I compute the 

calendar year an inventors’ collaborator dies, defined as 𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑌𝑒𝑎𝑟𝑖. Second, from the full 

dataset analyzed in the main text, I extract all inventor panels for which 𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑌𝑒𝑎𝑟𝑖 = 𝑡. 

I label these inventors as the treated units in “sub-experiment d”, so I create the variable, 

𝑡𝑟𝑒𝑎𝑡𝑖,𝑑 = 1, for the inventors in this data subset. Third, from the full dataset I subset all 

inventor*year observations for which 𝑡 − 5 < 𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑌𝑒𝑎𝑟𝑖 < 𝑡 + 12, meaning that these 

observations were taken more than 5 years before or 12 years after their collaborator died. These 

are the control observations for sub-experiment d, so I set 𝑡𝑟𝑒𝑎𝑡𝑖,𝑑 = 0 for these observations. This 

ensures that the control group does not contain invalid comparisons due to pre-or-post trends 

associated with a loss of a collaborator. Fourth, I append the treated observations dataset to the 

control observations dataset. Fifth, I omit from this appended dataset all observations that fall 

outside the treatment window (5 years before or 12 years after year t). Finally, I repeat the above 

steps for all treatment years, 1980 to 2001, to create a data stack containing 5,026,225 

inventor*year observations with 12,232 unique “treated” inventors and 65,915 unique “control” 

inventors. 

 

 To estimate the effect of the loss of a junior collaborator on surviving inventors’ patenting 

productivity, I estimate the model described by Equation A1. 
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(A1)   𝑃𝑎𝑡𝑃𝑟𝑜𝑑𝑖,𝑡

= exp [ ∑ Φ𝜏𝑇𝑖𝑚𝑒𝑇𝑜𝑆𝑢𝑏𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖𝑑𝑡
𝜏

12

𝜏=−5

+ ∑ Ψ𝜏𝑖𝑇𝑖𝑚𝑒𝑇𝑜𝑆𝑢𝑏𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖𝑑𝑡
𝜏 ∗ 𝑇𝑟𝑒𝑎𝑡𝑖𝑑

12

𝜏=−5

+ ∑ Ω𝜏𝑖𝑇𝑖𝑚𝑒𝑇𝑜𝑆𝑢𝑏𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖𝑑𝑡
𝜏 ∗ 𝑇𝑟𝑒𝑎𝑡𝑖𝑑 ∗ 𝐽𝑢𝑛𝑖𝑜𝑟𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖

12

𝜏=−5

+ 𝛼𝑖𝑑 + ρ𝑡 + ε𝑖𝑡] 

 

In the model, τ indexes event time (-4 to 12) and t indexes calendar time (1975 to 2013). 

𝑇𝑖𝑚𝑒𝑇𝑜𝑆𝑢𝑏𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖𝑑𝑡
𝜏  contains indicators for event time, with 0 (the year of the event) 

taken as the reference group. Thus, Φ𝜏 gives the change in patent production over event time for 

the control observations in sub-experiment d, relative to the event year 0. Ψ𝜏𝑖 gives the patent 

differential for the inventors treated in sub-experiment d. The coefficients of interest are Ω𝜏𝑖, 

which gives the differential for losing a junior collaborator, for treated units in sub-experiment d. 

The model also includes individual*sub-experiment and calendar time fixed effects. Standard 

errors are clustered at the sub-experiment*deceased collaborator level. 

As in the main analysis in the paper’s full text, I estimate Equation A1 four times to explore 

robustness of the results. The coefficient values are plotted in Figure A1. The results are similar to 

the ones presented in the main analysis. Specifically, inventors who lose junior collaborators to 

premature deaths suffer a larger decline in subsequent patenting than do inventors who lose mid-

career collaborators. The treatment effect becomes significant 7 years after the collaborators’ 

death. 
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Figure A1: Change in Patenting Productivity Following Death of Junior Collaborator 

Relative to Mid-Career Collaborator using Stacked Regression 

 Effect on Overall Patents per Year Effect on Highly-Cited Patents per Year 
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Notes: Figures shows effect of losing an early-career collaborator (age 20-44 at time of death) relative to 

losing a mid-career collaborator (aged 45-59 at death) on patenting productivity using a stacked regression. 

Standard errors are clustered at the deceased collaborator * sub-experiment level.  
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A3) The Relationship between Collaborator Age, Knowledge Age, and Knowledge Fertility  

 

 In the main text, Table 2 showed that inventors suffer large declines in patent production 

when they lose collaborators that have knowledge of newly-introduced and fertile ideas. In 

addition, the table showed that these relationships can fully erode the explanatory power of a 

collaborators’ age at time of death on the patenting productivity of their co-inventors. 

 In this section of the appendix, I show that younger inventors have knowledge of newer 

and more fertile ideas. To conduct this test, I administer a regression where the mean age and mean 

fertility of citations made in collaborators’ patents in the three years pre-death are a function of the 

collaborators’ age at time of death and death year fixed effects. Specifically, the OLS regression 

model is given by Equation A2: 

 

(A2) 𝑀𝑒𝑎𝑛𝐶𝑖𝑡𝑒𝐴𝑔𝑒𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑗 = β0 + β1𝐴𝑔𝑒𝐴𝑡𝐷𝑒𝑎𝑡ℎ𝑗 + λ𝑡 + εj 

 

In the model, j indexes deceased collaborators. Each collaborator appears only once in the 

regression. 𝜆𝑡 are calendar year effects for the year of the collaborator’s death. The regression for 

𝑀𝑒𝑎𝑛𝐶𝑖𝑡𝑒𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑗 is similar. Estimates for Equation A2 using the full set of 

deceased collaborators are provided in Table A2. The results in the table show that older 

collaborators cite older and less-fertile patents. 

 

Table A2: Regression Results for Equation A2 on Collaborator Age, Knowledge Age, and 

Knowledge Fertility 

 Dependent Variable 

 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑀𝑒𝑎𝑛𝐶𝑖𝑡𝑒𝐴𝑔𝑒𝑗 𝑃𝑟𝑒𝐷𝑒𝑎𝑡ℎ𝑀𝑒𝑎𝑛𝐶𝑖𝑡𝑒𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑗 

𝐴𝑔𝑒𝐴𝑡𝐷𝑒𝑎𝑡ℎ𝑗 
0.0427*** 

(0.00884) 

-0.00221** 

(0.00116) 

Death Year Fixed 

Effects? 
Yes Yes 

R2 0.021 0.004 
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Observations 

(Collaborators) 
9,757 10,135 

Notes: PreDeathMeanCiteAge and PreDeathMeanCiteFertility are computed using the patents applied for 

by the deceased collaborator in the 3 years before their death. 

 

A4) Field Speed Analyses 

 

If knowledge obsolescence causes early-career inventors to generate more patenting 

spillovers than mid-career inventors, one would expect two patterns. First, the effect size should 

be larger for inventors that work in fast-advancing knowledge fields. Second, the loss of an early-

career collaborator should impede the ability of their surviving partners from learning new ideas 

in recently developed areas of technology. To test the first proposition, I measure the rate of 

advance in inventors’ technological fields by calculating the average age of the citations made in 

each CPC technology field and year. Decomposing the effects by the rate of field advance in which 

each inventor primarily patents, I test whether inventors that primarily work in fast-advancing 

fields experience a greater decline in patenting productivity following the loss of an early-career 

collaborator than do inventors who work in slower-advancing fields. There are 123 unique 

technology classes in my dataset at this level of the CPC classification scheme. 

To test whether the differential effect of losing a junior collaborator is greater in fast-

advancing knowledge fields, I run the main regression described by Equation 1 separately for 

surviving inventors that primarily patent in fast-advancing and slow-advancing knowledge fields. 

I define fast and slow fields in each year based on whether the mean age of the citations made in 

the class are above or below the yearly median. Because some patents cite pre-1976 patents, for 

which I do not have application year data available, I use grant years to compute citation age. I 

plot the full host of β1 coefficients for each regression in Figure A3. 

Figure A3 shows that the negative effect of losing an early-career collaborator on 

subsequent patenting is more pronounced in fast-advancing knowledge fields. Inventors in fast-

advancing knowledge fields that lose early-career collaborators experience a significant and 

immediate decline in their subsequent overall patenting rate, while inventors in slow-advancing 

knowledge fields experience a smaller decline that takes longer to take effect. This difference is 

greater for inventors who lose repeat collaborators. 
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Figure A3: Change in Patenting Productivity in Slow and Fast-Advancing Knowledge 

Fields 
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Notes: Figure shows effect of losing an early-career collaborator on subsequent patenting rate, relative to 

losing a mid-career collaborator. Slow and fast-advancing knowledge fields are identified based on the 

average age of the patent citations in each inventor’s modal technological field, as described in the text. 

 

The above results suggest that the loss of an early-career collaborator impedes inventors’ 

ability to learn new ideas that are at the frontier of their fields. To test this proposition directly, I 

examine whether inventors proceed to cite older patents following the loss of an early-career 

collaborator. To do so, I calculate the mean age of the patents cited by a patent p. Using the 

resulting measure of the age of the knowledge cited by each patented invention, I develop a 

regression model that tests whether inventors combine older ideas following the loss of an early-

career collaborator. The OLS model is given by Equation A3: 

 

(A3) log (𝑀𝑒𝑎𝑛𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑔𝑒)𝑝 = β0𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖,𝑡 + ∑ β𝑚𝑃𝑜𝑠𝑡𝐶𝑜𝑙𝑙𝑎𝑏𝐷𝑒𝑎𝑡ℎ𝑖𝑡 ∗59
𝑚=20

𝐴𝑔𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝐴𝑡𝐷𝑒𝑎𝑡ℎ
𝑖
𝑚 + 𝛼𝑖 + 𝜏𝑓𝑡 + ε𝑖,𝑡 
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The reference group for the variable 𝐴𝑔𝑒𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐶𝑜𝑙𝑙𝑎𝑏𝑖 is a collaborator that dies 

between ages 55 and 59. Therefore, the β𝑚 coefficients are interpreted as the change mean 

subclass age of the USPC subclasses on an inventors’ patents following the loss of an 

collaborators in a specific age range, relative to collaborators that die between 55 and 59. 𝜏𝑓∗𝑡 are 

indicator variables for the primary technology class on patent p, interacted with year t. These 

indicator variables adjust for the mean subclass age in the primary technology class of patent p in 

the year in which it is applied for. Thus, the coefficient of interest (β𝑚) is interpreted in relation 

to the mean age of the knowledge produced in the same field and year. I estimate Equation A2 

twice, first using inventor and year effects, and second using inventor and field*year effects. 

This separate estimation allows me to test whether inventors respond to the loss of younger 

collaborators by switching to slower-advancing technology fields. The plots are in Figure A4. 

 

Figure A4: Change in Knowledge Vintage by Collaborator Age at Death 

Inventor and Year Effects Inventor and Field*Year Effects 

  

Notes: Figures show the differential effect of losing a collaborator at a specific age at of death relative time 

(grouped into 5 year bins) to losing a collaborator aged 55-59 at time of death on the vintage of the surviving 

inventors’ primary subclasses on patents.  

 

Figure A4 shows that inventors combine ideas that are 25-30% older if they lose a 

collaborator that dies in her or his 20s instead of a collaborator that dies in her or his 50s. The 

coefficients associated with collaborators that die in their 20s are noisy, but generate some 

evidence that very young collaborators may also act as conduits for inventors to access very 

recently-developed ideas. The effects are similar when field*year effects are introduced in the 

model, suggesting that inventors generally do not switch to slower-advancing technology classes 
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following the loss of junior collaborators. Instead, inventors who lose junior collaborators continue 

to patent in technological fields that advance at similar rates, but they combine knowledge that is 

further from the forefront of those fields. 
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A5) Viability of Early-Career Deaths as Counterfactual for Mid-Career Deaths 

 

To determine whether collaborators who die in their early careers are valid counterfactuals 

for inventors that die mid-career, in the left panel of Figure A5 I plot the patents per year produced 

by deceased collaborators at each age. The data are broken out by collaborators that die early-

career and mid-career, with 45 years old at death as the breakpoint. 

 Collaborators that die in their early careers produce more patents per year than collaborates 

who die in the mid careers at very low ages (below age 34). This difference implies that 

collaborators who die early are highly productive at a young age, which leads them to have many 

collaborators before they die young. However, the patenting advantage of the early-career 

deceased collaborators stops after age 35, when their patenting output converges to the rate of 

collaborators that die mid-career. This convergence implies that the early-career deceased do not 

reach higher peak productivity levels than do inventors who die in their mid-careers. Therefore, a 

focal inventor who loses an early-career collaborator does not lose a collaborator that would have 

reached higher peak productive than an inventor who loses a mid-career collaborator.  

 Despite their similar peak productivity, collaborators that die early-career have higher 

patenting productivity in their very early careers (before age 35) than do collaborators that die 

mid-career. This difference implies that an inventor who loses a collaborator at a very young age 

(before age 35) could suffer a loss of a more productive collaborator. To ensure that the 

productivity differences of early-career collaborator deaths before age 35 do not bias the analysis, 

I also reproduce the main event study, omitting all collaborators that die before age 35. Therefore, 

in the robustness check, I define early-career collaborator deaths as those that occur between ages 

35-44, and mid-career collaborator deaths as those that occur between ages 45-59. I exclude other 

collaborator deaths from the analysis. The regression is otherwise identical to the one described 

by Equation 1 in the main text. I plot the differential treatment effect of losing a junior collaborator, 

relative to a mid-career collaborator, in the right panel of Figure A5. The event plot is very similar 

to the one in the main analysis that does not exclude collaborates that die between ages 20 and 34: 

the pre-trends are parallel, and the treatment effect becomes significant and negative 7 years after 

the collaborator’s death. 
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Figure A5: Analysis of Viability of Mid-Career Collaborator Deaths as a Counterfactual 

for Early-Career Collaborator Deaths 

(A) Mean Patents per Year for Collaborators 

that Die Mid-Career and Early Career 

 

 

(B) Differential Change in Patents per Year 

Following Death of Junior Collaborator, 

Omitting Collaborator Deaths Below Age 35 
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A6) Addition Results 

 

This appendix shows results where inventors that die between ages 55-59 are omitted from the 

data, and where a window of 3 years is used to define inventors’ past collaborators. The results 

conform to the results presented in the main analysis. 

 

Figure A6: Change in Patenting Productivity by Age of Deceased Collaborator, Deaths 

Under Age 55 

(A) Effect on Overall Patenting 

 

(B) Effect on High-Impact Patenting 

 

Notes: Figures shows effect of losing an early-career collaborator (age 20-44 at time of death) relative to 

losing a mid-career collaborator (aged 45-54 at death) on patenting productivity. All models include focal 

inventor and year*technology class fixed effects. Standard errors are clustered at the deceased collaborator.  
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Figure A7: Change in Patenting Productivity by Age of Deceased Collaborator, Max 3 

Years Between Collaboration and Death 

(A) Effect on Overall Patenting 

 

(B) Effect on High-Impact Patenting 

 

Notes: Figures shows effect of losing an early-career collaborator (age 20-44 at time of death) relative to 

losing a mid-career collaborator (aged 45-59 at death) on patenting productivity. A focal inventor’s 

deceased collaborators are defined as those that a focal inventor co-invented a patent with in the 3 years 

leading up to the collaborator’s premature death. This 3-year threshold contrasts with the 5 year threshold 

used in the other analyses. All models include focal inventor and year*technology class fixed effects. 

Standard errors are clustered at the deceased collaborator. 

 


