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Workers in knowledge-intensive industries often complain of having too many meetings, but organizations

still give little thought to deciding when or how often to meet. We investigate the efficiency and robustness

of various coordination scheduling rules. We consider workers who are engaged in a common activity (e.g.,

software programming) that can be divided into largely independent, parallel production tasks, but that

necessitates periodic coordination. Coordination enables workers to address issues they have encountered in

their independent work, but takes time away from production. Using a stylized game-theoretic model, we

show that small teams allow a more fluid, i.e., worker-driven, approach to scheduling coordination, such as

preemptive coordination (or production), under which any worker can impose coordination (or production).

In larger teams this becomes inefficient. Several approaches can mitigate this effect. One option is to allocate

the decision rights to produce or coordinate to the most productive worker. A more general version is to

implement a voting-based scheme, where a minimum number of workers from a predetermined subset choose

to coordinate. A third approach is to modify the preemptive coordination and production rules by adding

time-based controls, to reserve some minimal amount of productive time or to enforce coordination after some

point. Finally, a fixed-interval meeting schedule works well for very large teams. Our research helps formalize

the tension between meeting (coordinating) and producing, and indicates how to adapt team coordination

scheduling rules to the degree of worker heterogeneity and team size.

Key words : Collaboration and coordination models; Game theory; Teams and group decisions; New

product design and development

1. Introduction

Alice and Bob are responsible for managing a software product. They each have their own domain

(e.g., graphical user interface vs. database handling), but they occasionally need to coordinate to

ensure the product will work. This might involve negotiating which of several possible approaches

to take or which new functions to prioritize—issues that require in-person discussions that cannot

be settled with a short email exchange or chat.

Initially they interrupt each other whenever such an issue arises, but they both feel they get

nothing done. They agree to meet every Monday morning to iron out any such issues and promise

not to interrupt each other the rest of the week. Often they find out on Monday that much of what

they had done last week is incompatible with the other’s work, so at least one of them wasted

most of the previous week. Reluctant to rigidly increase the frequency of their meetings, they

agree instead to meet every Monday, then to work independently for at least two days, and to

allow interruptions on Thursday and Friday. This works reasonably well; some weeks they end up

meeting on Thursday and/or Friday, other times they work independently all week and meet again
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on Monday. Senior management notices their approach and adopts it for the entire company. Alice

and Bob join a much larger team working on a more complex product, but are surprised to see

their approach break down: the team spends every Monday, Thursday, and Friday meeting and

does not get as much done as it should.

This vignette points to a fundamental challenge in many organizations: agents need some coor-

dination to maintain productivity, but not too much. The complaint about too many meetings

is widely heard and not new. Drucker (1967) observed that “one either meets or one works. One

cannot do both at the same time.” Cross et al. (2016) warn that the benefits of collaboration are

clear but the costs are often ignored. Even organizations that value time management tend to

view it as an individual rather than institutional issue (Bevins and De Smet 2013), though some

have adopted rules like Tommy Hilfiger’s “no-meeting Friday” (Staats 2018, p. 92); see also Saun-

ders (2017). Perhaps the most in-depth investigation is the ethnographic work by Perlow (1999),

describing experiments with various forms of “quiet time” in a high-tech software firm; despite

their success, these rules did not endure after the experiments concluded.

Various practitioner-oriented blogs and books address meeting frequency. One focuses on the

optimal cadence,1 not taking into account the workers’ needs. Another2 argues that stochastic

environments call for a more fluid approach to meeting scheduling. Nelson Repenning3 suggests that

meeting frequency should be linked to workers’ needs. Computer scientist Cal Newport emphasizes

the importance of uninterrupted time (Newport 2016) and of having protocols for how to schedule

meetings (Newport 2021). Schwarz (2017) recognizes that coordination can range from standardized

to dynamic and should depend on the interdependence between workers. A mismatch might reveal

itself through complaints about too many meetings or about lack of communication. Perlow et al.

(2017) observe that even well-run meetings become too frequent as an organization grows, often

forcing workers to sacrifice their personal time to get work done, endangering their well-being and

organizational success.

A large and growing literature in operations management (OM) and organizational behavior

(OB), originating from Simon (1947), examines the need for and the costs of coordination in teams.

One might be able to reduce coordination demands by spending more time upfront on planning

and specifications. However, once the need to coordinate and the costs of doing so are given, this

formal and informal literature says relatively little about several fundamental questions related to

coordination scheduling:

1 https://blog.lucidmeetings.com/blog/how-often-should-you-meet-selecting-the-right-meeting-

cadence-for-your-team

2 https://robinpowered.com/blog/how-meeting-coordination-is-replacing-reservation-systems-in-the-

workplace/

3 https://mitsloan.mit.edu/ideas-made-to-matter/5-ways-to-avoid-ineffective-meetings

https://blog.lucidmeetings.com/blog/how-often-should-you-meet-selecting-the-right-meeting-cadence-for-your-team
https://blog.lucidmeetings.com/blog/how-often-should-you-meet-selecting-the-right-meeting-cadence-for-your-team
https://robinpowered.com/blog/how-meeting-coordination-is-replacing-reservation-systems-in-the-workplace/
https://robinpowered.com/blog/how-meeting-coordination-is-replacing-reservation-systems-in-the-workplace/
https://mitsloan.mit.edu/ideas-made-to-matter/5-ways-to-avoid-ineffective-meetings
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• How often should agents coordinate? How should they decide when to coordinate?

• How well do simple worker-driven coordination scheduling rules work if agents have different

levels of productivity and coordination demands? How does it depend on team size?

• How do such rules compare with simple fixed-interval rules, such as weekly meetings?

We develop a simple game-theoretic framework to address these questions. By focusing on coordi-

nation scheduling, we address the symptom rather than the root causes of the need for coordination.

Our stylized approach aims to uncover some key dynamics of these settings, to stimulate further

research on prescriptive insights, perhaps using numerical or simulation-based methods.4

We consider workers who are engaged in a common activity (e.g., software programming) that

can be divided into largely independent, parallel production tasks, but that necessitates periodic

coordination. As a base case, we consider in §4 two workers operating in a discrete-time, infinite-

horizon, stationary environment with a binary productivity function, meaning that as soon as a

worker encounters an issue requiring coordination, her productivity drops to zero. (We explore

more general productivity functions in Appendix B.) In each period, workers produce or coordinate

to maximize their individual future discounted sum of value from production across time periods.

When workers coordinate, all pending issues are resolved, restoring productivity to its highest level.

The workers thus face a trade-off between generating output, perhaps not both at full productivity

if they have accumulated issues, or spending this period coordinating to both generate output at

full productivity later. We explore several worker-driven coordination scheduling rules:

• Preemptive Coordination (PC), where any worker can interrupt the other at any time—this

is similar to an open-door policy;

• Preemptive Production (PP), where coordination occurs only when all workers want it—this

is closer to a closed-door policy;

• Hierarchical Structure (HS), where one designated worker decides when coordination occurs.

When the workers’ productivity function is binary, each of these rules can achieve the first-best

(FB) outcome for certain parameter values. The productivity loss from choosing the wrong rule

can be quite large, especially when the workers have heterogeneous coordination demands and

productivity levels. For instance, under PC, a worker who adds little value but frequently needs

coordination will severely limit the more valuable worker’s output. All coordination scheduling

rules lead to outcomes with which some workers might disagree. For instance, coordination may

occur even when one worker would like to keep producing. That worker may perceive the meeting

4 Meetings may have different purposes (e.g., information sharing, decision making), requiring different scheduling
rules. We abstract away from this finer-grained classification of meetings by framing them generically as coordination
meetings whose purpose is to resolve pending issues that prevent a worker from being productive. We recognize other
types of coordinating meeting in the conclusions.
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Table 1 Categorization of scheduling rules for team coordination

Time-Independent Time-Dependent

Not Worker-Driven always (every period) or never Fixed Interval (FI)

Worker-Driven
Preemptive Coordination (PC) PC with Minimum Cycle Duration (PC-Cmin)
Preemptive Production (PP) PP with Maximum Cycle Duration (PP-Cmax)
Hierarchical Structure (HS) HS with Min/Max Cycle Duration (HS-Cmin, HS-Cmax)

as a waste of time but that ignores the benefits for the team (Appendix A). Of course, when workers

are rewarded for the team’s production, not just their own, their incentives are aligned and such

disagreement disappears (Appendix C).

To mitigate that productivity loss, we consider worker-driven coordination scheduling rules

enhanced with time-based controls or “safeguards,” such as a minimum production cycle duration

(under PC or HS) before coordination is allowed (PC-Cmin or HS-Cmin), or a maximum production

cycle duration (under PP or HS) after which coordination is required (PP-Cmax or HS-Cmax). These

enhanced rules substantially reduce the suboptimality gap experienced by their basic counterparts.

Larger teams pose further challenges, explored in §5: PC, PP, and HS can again lead to substan-

tial productivity loss relative to FB. In a large team under PC, some worker will almost always

want to coordinate, so the team rarely produces. This is consistent with the coordination neglect

hypothesized by Heath and Staudenmayer (2000) and the related team scaling fallacy observed by

Brooks (1975) and Staats et al. (2012). As with small teams, adding safeguards helps, especially

for PC and PP. A voting-based scheme, where a minimum of workers from a predetermined subset

need to agree to coordinate, can also mitigate the effect of larger team size.

We then analyze in §6 the purely time-based fixed-interval (FI) rule, such as standing weekly

meetings. Its suboptimality loss is limited to 28% across all team sizes; whether this is a large or

modest gap will depend on the context. For larger teams, the FI rule outperforms PC, PP, and

HS. The enhanced versions of PC and PP (PC-Cmin and PP-Cmax) outperform FI, but as team

size increases they converge towards FI. In light of our stylized analysis, these are not meant as

immediate practical prescriptions, but initial insights into the trade-offs involved.

We classify the rules according to whether they are based on the workers’ stated preferences

and/or the time since the last coordination, in the 2-by-2 matrix in Table 1. PC, PP, and HS are

worker-driven but time-independent; FI is not worker-driven but time-based. Rules that account for

both workers’ stated preferences and time, by adding a time-based coordination constraint (Cmin

or Cmax) to a worker-driven rule (PC, PP, or HS), can do better, but not always. Rules that are

neither worker-driven nor time-dependent (always or never coordinate) are obviously suboptimal.

2. Literature Review

Our work is related to research in OM and OB, as well as to the large popular literature on time

management. Research on time allocation in economics and OB focuses mostly on choosing between
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work vs. leisure. A smaller literature in OB, often descriptive or experimental, focuses specifically on

time at work. A key study, which helped to inspire our research, is the ethnographic work by Perlow

(1999), describing the frustration of engineers in a high-tech software firm who were constantly

interrupted by requests for help from others. Her analysis of their logs showed they rarely got the

blocks of uninterrupted time they needed to do their engineering work, due to constant interactive

activities. Those interactions were almost always helpful, but 95% occurred spontaneously while

86% could have been planned for a later time with no negative consequences. The firm first tried

“quiet time,” during which engineers did not interrupt each other, three days a week until noon,

and then switched to designating every day between 11am and 3pm as “interaction time,” before

switching back to “quiet time” in response to engineers’ feedback. This appeared effective, but did

not persist after the experiment concluded, which suggests that allowing unlimited interruptions is

a dominant default coordination mode. Our introductory vignette is motivated by this experiment.

Several studies look at the effect of interruptions. Tucker and Spear (2006) examine how pro-

cesses can be redesigned to reduce the impact of the frequent interruptions experienced by nurses.

Coordination is less frequently needed in more stable teams (Narayanan et al. 2011), with impor-

tant nuances on the team members’ degree of specialization, diversity, and familiarity (Huckman

and Staats 2011), or between teams that work on decoupled parts of a product (Sosa et al. 2004).

We focus here on the symptom and not the root cause of interruptions. Not all interruptions are

detrimental (Jett and George 2003), including informal interactions (Metiu and Rothbard 2013).

(Our model does not preclude those but we assume extensive coordination only takes place as

specified by the prevailing rule.) Among their benefits, meetings coordinate expertise (Faraj and

Sproull 2000), engender relational coordination (Gittell 2002), and enhance knowledge (Kotlarsky

et al. 2008). Similarly, we assume that coordination boosts future productivity.

Coordination needs are often unpredictable, especially in agile environments (Wiesche 2018),

making time management planning less effective than contingency planning (Parke et al. 2018).

The daily scrum meetings associated with agile development are a mechanism to flag coordination

needs; they are too short to hash out issues in depth. The daily 15-minute huddles at Intermountain

Healthcare (Harrison 2018) are similarly aimed more at conveying relevant information up and

down the hierarchy quickly, rather than tackling a specific issue in depth. This motivates us to

study worker-driven coordination scheduling rules (Table 1). In lean software development, Staats

et al. (2011) suggest that identifying problems early is important; this again raises the question

of when one worker should be allowed to interrupt another to resolve a newly-emerged question.

Gurvich et al. (2020) report that interruptions may result in significant changeover times and

propose to batch them—an integral part of our model.
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There is an extensive OB literature on team performance, but very little on the operational issue

of coordination within teams. Heath and Staudenmayer (2000) argue that aligning goals (the agency

problem) has received far more attention than organizing individuals (the coordination problem).

The books by McGrath and Kelly (1986) and McGrath and Tschan (2004) include brief discussions

of “synchronization” and “entrainment” in groups, but do not translate them into guidelines for

coordination frequency. Mohammed and Nadkarni (2011) find that how team leaders schedule and

synchronize tasks among members affects performance, which suggests that coordination scheduling

rules do matter. We contribute to this work by developing a formal framework for analyzing

coordination scheduling rules. Our simple model does not capture the richness of these practical

settings, but our approach can inform further numerical studies that do.

Most OM work on team coordination relates to New Product Development (NPD) or project

management. The NPD literature has traditionally adopted a macroscopic perspective on team-

work. Ha and Porteus (1995) consider the trade-offs in concurrent design: more frequent reviews

allow the process and product design teams to detect potential design flaws earlier, but at the cost

of more time spent on the reviews. Others have examined how to manage information exchange

in a concurrent process (Krishnan et al. 1997, Özkan-Seely et al. 2015) and the optimal degree of

concurrency (Loch and Terwiesch 1998, Roemer and Ahmadi 2004). This literature investigates

the trade-off between sequential and reciprocal dependency, following the typology by Thompson

(1967). In contrast, we consider pooled dependency, in which agents do not directly depend on one

another. Adopting an organization-wide perspective, Mihm et al. (2003), Mihm et al. (2010), and

Sting et al. (2020) use simulations to study the challenges of coordination in distributed search and

potential remedies such as setting up hierarchies and distributing knowledge. We consider a more

operational aspect of coordination, scheduling, similar to Thomke and Bell (2001) who consider

testing as a mechanism to reduce outstanding design problems in a single development process

(in contrast to our ongoing parallel activities). We adopt a more microscopic perspective, viewing

a team as a collection of autonomous agents working in parallel on distinct tasks, but requiring

periodic coordination due to the stochastic nature of the environment.

Taking a similar microscopic view, recent literature on project management studies the dynam-

ics of collaboration between agents. To maximize a team’s collaboration potential, different levers

are considered such as deadlines (Bonatti and Hörner 2011), milestones (Rahmani et al. 2017),

monitoring (Georgiadis 2015), and leadership style (Rahmani et al. 2018). This literature is mostly

concerned with the co-productive nature of the project, in which a single output results from the

agents’ joint input. We focus instead on the coordination dynamics between agents. Gurvich and

Van Mieghem (2015, 2018) study how the need for collaboration can cause a network to have lower
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capacity than its bottleneck resource, and show that in certain settings policies that prioritize col-

laboration perform better. Their modeling framework is a continuous-time network with discrete

tasks, while we assume a continuous stream of work in discrete time periods. Siemsen et al. (2007)

and Crama et al. (2019) distinguish between help, knowledge sharing, and co-productive linkages.

Crama et al. (2019) analytically model the “red card” system observed by Sting et al. (2015), who

highlight the importance of psychological safety to encourage engineers to ask for help (using red

cards) when their tasks are becoming critically delayed. Although our focus is not on accelerating

project completion, the same concern about reluctance to interrupt others applies; explicit coordi-

nation scheduling rules can help mitigate that concern. This literature typically models investments

in coordination as unconstrained (but costly) efforts. We contribute to that literature by explicitly

modeling coordination as an activity that takes time at the expense of production.

The vast practical literature on time management for individuals, including Drucker (1967),

MacKenzie (1972), and Griessman (1994), typically does not examine the organizational ramifi-

cations of protecting one’s time. Several analytical papers on time allocation, including Radner

and Rothschild (1975), Seshadri and Shapira (2001), and Yoo et al. (2016), also ignore interactions

between individuals. Recent collaboration software includes mechanisms for avoiding interruptions,

e.g., the Slack’s Do-Not-Disturb hours or Basecamp’s Focus Mode, but the academic and practi-

tioner literatures to date provide minimal guidance on how organizations should use them.

3. Model

We consider a team of n workers (e.g., software developers) involved in a common activity, which

is divided into largely independent, parallel tasks (e.g., user interface vs. database, or iOS vs.

Android versions) but necessitates periodic coordination (e.g., to link objects to each other). While

producing independently, workers may encounter issues which require dedicated coordination time

to resolve. (We do not consider minor issues that can be resolved in a quick conversation or email

exchange.) Coordination improves future productivity by resolving the accumulated issues, but

takes time away from production.

We model this complex situation in the stylized way shown in Figure 1. Time is discrete; a period

corresponds to a few hours of work. In each period, workers engage in either Production (P ) or

Coordination (C). During a production period, the value of worker i’s output, or productivity,

fi(xi), depends on the number xi of accumulated issues, with fi(0)> 0 and f ′
i(xi)≤ 0; there is a

number of issues xi beyond which the value of the worker’s production is zero, i.e., fi(xi) = 0 for

all xi ≥ xi > 0. We refer to xi as the worker’s (coordination) “needs”. We assume workers care only

about their own productivity. In Appendix C we briefly consider team incentives.

The likelihood of encountering additional issues is stationary and independent of the current

stock of issues. Let P[ξ] be the probability distribution of ξ
.
= (ξ1, . . . , ξn)≥ 0 issues arising during
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Figure 1 Timeline

Organization sets 
coordination scheduling rule 
𝜋

State at the beginning of 
period:
• 𝒙 = 𝑥ଵ, … , 𝑥 : number 

of accumulated issues 
per worker

• 𝑡: number of periods 
since the last 
coordination period

Each worker 𝑖 states her 
preferred outcome 
𝑎

గ 𝒙, 𝑡 ∈ 𝐶, 𝑃

Rule 𝜋 determines 
outcome
 𝐴గ 𝑎ଵ

గ, … , 𝑎
గ , 𝑡 ∈ 𝐶, 𝑃

If outcome is 𝐶, all workers 
spend period coordinating 
and generate no output

If outcome is 𝑃, each worker 
𝑖 spends period producing at 
rate 𝑓 𝑥

Update state:
• 𝒙 ← 0, … , 0
• 𝑡 ← 0

Update state:
• 𝒙 ← 𝒙 + 𝝃 with probability ℙ 𝝃 as issues arise
• 𝑡 ← 𝑡 + 1

any production period. By coordinating, workers get all their issues resolved, akin to the full-fidelity

test in Thomke and Bell (2001), so worker i’s productivity after coordination is reinitialized to

fi(0), for all i = 1, . . . , n. Coordination takes one period, irrespective of the accumulated issues,

has no setup time beyond the period spent coordinating, and requires the participation of all

workers. There is no monetary cost associated with production or coordination; only time matters.

Time is discounted by δ ∈ (0,1), which introduces a trade-off between generating output now at

rate fi(xi) and coordinating to generate output in the next period at the maximum productivity

fi(0). Relative to the rate at which issues emerge, the activity has a long-term horizon, which we

approximate as infinite (as in, e.g., Bonatti and Hörner 2011). These assumptions are made for

simplicity to generate preliminary insights into the coordination dynamics.

At the start of a period, the state is (x, t), where x = (x1, . . . , xn) is the workers’ needs and t

is the time since the last coordination period. The period immediately following a coordination

period has t= 0. At the beginning of each period, every worker states their preferred outcome, i.e.,

whether they prefer to coordinate or produce, yielding a vector a= (a1, . . . , an)∈ {C,P}n.
A coordination scheduling rule π is a mapping from any set of workers’ preferred outcomes

a ∈ {C,P}n and any elapsed time since coordination t≥ 0 to an outcome (C or P ). The outcome

implemented under rule π when given (a, t) will be denoted as Aπ(a, t) ∈ {C,P}. We omit the

argument a whenever π does not depend on workers’ preferences and omit t whenever it is time-

independent. Of particular interest are the following coordination scheduling rules:

• Preemptive Coordination (PC): coordinate if and only if any worker chooses to, i.e.,

APC(a) =C⇔
n∑

i=1

1[ai =C]≥ 1, (1)

in which 1[X] is the indicator function, equal to 1 if X is true and zero otherwise.

• Preemptive Production (PP): produce if and only if any worker chooses to, i.e.,

APP(a) = P ⇔
n∑

i=1

1[ai = P ]≥ 1. (2)
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• Hierarchical Structure (HSj): decision delegated to worker j, i.e.,

AHSj (a) =C⇔ aj =C. (3)

Whenever the choice of the worker who is allocated all decision rights is arbitrary, we will

identify her as worker 1 and will simply refer to this coordination scheduling rule as HS.

• Fixed Interval (FI): coordinate every T ≥ 2 periods, i.e.,

AFI(t) =C⇔ t≥ T − 1. (4)

Coordinating every two periods means each coordination period is followed by production and

vice versa.

Under PC, any worker is free to disrupt the production of the others and call for a coordination

meeting. This is similar to an open-door policy or one under which workers are expected to answer

phone calls from co-workers regardless of what they are doing. Under PP, coordination happens

only if all workers want it, similar to a closed-door policy or one that lets the “Do Not Disturb”

status on Microsoft Teams signal that one is strictly unavailable. HS assigns the decision rights to

coordinate or produce to one worker. And FI specifies a predetermined meeting frequency.

While the first three rules are worker-driven, the fourth is time-based. Under the worker-driven

rules, coordination need never happen, or can occur every other period, depending on the prob-

ability of issues and the rule in place. Later, we introduce variations of these rules that are both

worker-driven and time-dependent, to add constraints on how frequently or rarely coordination

occurs. We did not seek to capture the policies in Perlow (1999) perfectly, but the spirit of PP

is the same as “quiet time”, while that of PC mirrors “interaction time.” The policies in Per-

low (1999) are hybrids, specifying alternating periods during which production or coordination

dominate, which is closer to the worker-driven and time-based variations that we introduce later.

Obviously, other rules exist, such as coordinating if and only if at least k workers from a subset S

want it, for some given S ⊆ {1, . . . , n} and k ∈ {1, . . . , |S|}, i.e., Aπ(a) = C⇔
∑

i∈S 1[ai = C]≥ k.

This k-out-of-S-votes coordination rule is a generalization of PC, PP, and HSj. Table 2 lists all

coordination scheduling rules considered in the paper.

To avoid trivialities, we only consider rules where coordination is always followed by production,

i.e., Aπ(a,0) = P for any a (otherwise workers would never produce after coordinating), and that

are monotone in the following sense: for any a, Aπ(a, t) = C⇒ Aπ(a′, t′) = C for all a′ such that

for all i, ai = C⇒ a′
i = C, and for all t′ ≥ t. If C is the outcome associated with a set of workers

wanting to coordinate t periods since the last coordination period, then C will also occur with

any superset of workers wanting to coordinate at any longer time since last coordination. These

reasonable requirements are fulfilled by all the rules above.
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Table 2 Examples of coordination scheduling rules

Name Definition Worker-driven Time-based

Preemptive Coordination (PC) APC(a) =C⇔
∑n

i=1 1[ai =C]≥ 1 Y N
Preemptive Production (PP) APP(a) = P ⇔

∑n

i=1 1[ai = P ]≥ 1 Y N
Hierarchical Structure (HSj) AHSj (a) = P ⇔ aj = P Y N

k-out-of-S-Votes Coordination (kSV) AkSV(a) =C⇔
∑

i∈S 1[ai =C]≥ k Y N
Fixed Interval (FI) AFI(t) =C⇔ t≥ T − 1 N Y

PC with Min Cycle Duration (PC-Cmin) APC-Cmin

(a, t) =C⇔ t≥ T − 1 and
∑n

i=1 1[ai =C]≥ 1 Y Y
PP with Max Cycle Duration (PP-Cmax) APP-Cmax

(a, t) = P ⇔ t < T − 1 and
∑n

i=1 1[ai = P ]≥ 1 Y Y

HS with Min Cycle Duration (HSj-C
min) AHSj-C

min

(a, t) =C⇔ t≥ T − 1 and aj =C Y Y
HS with Max Cycle Duration (HSj-C

max) AHSj-C
max

(a, t) = P ⇔ t < T − 1 and aj = P Y Y

Worker i’s future discounted value (or “value-to-go”) under rule π in state (x, t), denoted V π
i (x, t),

equals δV π
i (0,0) if the outcome is to coordinate and fi(xi)+ δE [V π

i (x+ ξ, t+1)] if the outcome is

to produce, in which E[V π
i (x+ ξ, t+1)]

.
=
∑

ξ≥0 P[ξ]V π
i (x+ ξ, t+1).

We focus on Markov-perfect equilibria. Although there exist in principle many such equilibria

(Maskin and Tirole 2001), we focus on those in which workers play dominant strategies. Specifically,

for each worker i, a dominant strategy aπ
i (x, t)∈ {C,P} is a mapping from a state (x, t) to worker

i’s preferred outcome irrespective of the rule in place in the current period, but assuming that

rule π applies subsequently. In case worker i is indifferent between coordinating and producing, we

assume (without loss of generality) that she prefers coordinating. Accordingly,

aπ
i (x, t) =C⇔ δV π

i (0,0)≥ fi(xi)+ δE [V π
i (x+ ξ, t+1)] . (5)

As a result, the equilibrium aπ(x, t)
.
= (aπ

1 (x, t), . . . , a
π
n(x, t)) can be computed by solving n indepen-

dent dynamic programs. We show later that they can sometimes be solved in closed form. Under

coordination scheduling rule π, worker i’s value-to-go in state (x, t) is:

V π
i (x, t) =

{
δV π

i (0,0) if Aπ(aπ(x, t), t) =C
fi(xi)+ δE [V π

i (x+ ξ, t+1)] if Aπ(aπ(x, t), t) = P.
(6)

The total value-to-go of all workers is V π(x, t)
.
=
∑n

i=1 V
π
i (x, t). We use the shorthand V π

i

.
= V π

i (0,0)

and V π .
=
∑n

i=1 V
π
i . With a slight abuse of notation, let Aπ(x, t)

.
= Aπ(aπ(x, t), t) be the policy

induced by rule π in equilibrium, i.e., the mapping from state (x, t) to outcomes in {C,P}. We use

the term “policy” in the dynamic programming sense, not implying an organizational policy.

We aim to identify a simple coordination scheduling rule π that maximizes the total discounted

value V π subject to (5) and (6), only using knowledge of the workers’ stated preferences a and

the elapsed time since coordination t. As a benchmark, we consider the “first-best” (FB) policy,

which maximizes the total value, under full knowledge of the accumulated number of issues. The

FB policy turns out to be only dependent on x, not on t, and we denote it as AFB(x). Accordingly,

AFB(x) =C⇔ δV FB(0)≥
n∑

i=1

fi(xi)+ δE
[
V FB(x+ ξ)

]
, (7)
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in which V FB(x) is given by

V FB(x) =

{
δV FB(0) if AFB(x) =C∑n

i=1 fi(xi)+ δE [V FB(x+ ξ)] if AFB(x) = P.
(8)

Similar to the machine maintenance planning problem (Sasieni 1956), the FB policy is a threshold

policy. In particular, it is optimal to produce if and only if
∑n

i=1 fi(x)>ϕ for some ϕ.

Proposition 1. There exists a threshold ϕ ∈ [0,
∑n

i=1 fi(0)) such that AFB(x) = P ⇔∑n

i=1 fi(xi)>ϕ, and V FB = ϕ/(δ(1− δ)).

All proofs appear in Electronic Companion §EC.2. Although the FB policy is simple to describe,

it may not be practical because it requires full knowledge of the workers’ needs, which may be

impossible to verify. To simplify the analysis, we make the following assumptions:

Assumption 1. (i) The transition probabilities are independent, i.e., P[ξ] =
∏n

i=1 Pi[ξi], and,

for each worker, at most one issue arises per period i.e., Pi[1] = 1−Pi[0]; let pi
.
= Pi[1].

(ii) xi = 1 for all i= 1, . . . , n, i.e., fi(xi) = 0 for all xi ≥ 1 for all i= 1, . . . , n; let vi
.
= fi(0).

Under Assumption 1(ii), it is optimal for worker i to want to produce if and only if she is fully

productive (Lemmas EC.1-EC.2 in §EC.2). In our model, each worker continues producing, even

if their productivity has declined to 0. In a more general model, workers could decide to stop

working once they are unproductive; that is payoff-equivalent to our model under Assumption 1(ii).

Accordingly, worker i’s stated preference, which solves the dynamic program (5), simplifies to:

aπ
i (x, t) = P ⇔ xi = 0 ∀i. (9)

Hence, under Assumption 1(ii), there is a one-to-one relationship between workers’ needs and

their stated preferences, which are independent of both the time since coordination and the other

workers’ needs. We refer to the likelihood of worker i encountering an issue, pi, as her coordination

demands. Workers differ in terms of their coordination demands pi and productivity vi.

We relax Assumption 1(ii) in Appendix B. When the productivity function is binary but has a

base value, i.e., when fi(xi) = bi < vi when xi > 0, with bi > 0, worker i may want to produce even

if she has accumulated issues, provided that bi is large enough, contrary to Lemma EC.1.

An alternative approach could be to reward workers for their team performance. In Appendix C,

we consider replacing the in-period reward in (5) and (6) from fi(xi) to γfi(xi)+(1−γ)
∑

j ̸=i fj(xj),

with 1/2≤ γ ≤ 1. With team incentives, Lemmas EC.1 and EC.2 may no longer hold since a worker

may wish to produce even if she has accumulated issues (if her coworkers are productive) and to

coordinate even if she is fully productive (if her coworkers have accumulated issues). When γ = 1/2,

workers’ strategies are fully aligned and the workers always agree to implement the FB policy.
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4. Teams of Two Workers

We first consider a team of only two workers to motivate the PC, PP, and HS worker-driven

coordination scheduling rules (1)-(3). Throughout this section, let −i .
= 3− i for i∈ {1,2}.

4.1. First-Best Policy

By Proposition 1, the FB policy prescribes production if and only if f1(x1)+ f2(x2) exceeds some

threshold ϕ. For binary productivity functions (Assumption 1), where fi(0) = vi, assuming, without

loss of generality, that v1 ≥ v2, this gives rise to three ranges of interest for ϕ: (0, v2], (v2, v1], and

(v1, v1 + v2]. To characterize the FB policy we define the following functions:

α(p1, p2, δ)
.
=

δ

1− δ(1− p1)(1− p2)
and β(p1, p2, δ)

.
=

1+ δp1
δ

− 1− δ(1− p1)

δ
α(p1, p2, δ). (10)

It turns out that α(p1, p2, δ) ≥ 1 if and only if β(p1, p2, δ) ≤ 1. Hence, if v1/v2 ≥ 1, then v1/v2 ≤

α(p1, p2, δ)⇒ v1/v2 ≥ β(p1, p2, δ). The FB policy can be expressed in terms of three ranges for v1/v2.

Proposition 2. Under Assumption 1 when n= 2, the FB policy is the following: When v1 ≥ v2:

• If v1
v2
≤ α(p1, p2, δ), Produce in (0,0), Coordinate otherwise (if anybody has an issue);

• If v1
v2
≤ β(p1, p2, δ), Produce in (0,0), (0, x2) for any x2 ≥ 1, and (x1,0) for any x1 ≥ 1, Coor-

dinate otherwise (if everybody has an issue);

• If v1
v2
≥ α(p1, p2, δ) and v1

v2
≥ β(p1, p2, δ), Produce in (0,0), (0, x2) for any x2 ≥ 1, Coordinate

otherwise (if worker 1 has an issue).

This means that (when v1 ≥ v2) the FB can be achieved by PC if v1
v2
≤ α(p1, p2, δ), by PP if

v1
v2
≤ β(p1, p2, δ), and by HS1 if v1

v2
≥ α(p1, p2, δ) and v1

v2
≥ β(p1, p2, δ). Given that PC, PP and HS

achieve the FB outcome for certain regions when n= 2 and under Assumption 1, they are natural

candidates in more general settings, e.g., larger teams or general productivity functions.

Figure 2 illustrates Proposition 2 by depicting where each rule is optimal when v1 ≥ v2, p1 = 0.3,

and δ = 0.7. The space (p2, v1/v2) is divided into three regions by the functions α(p1, p2, δ) and

β(p1, p2, δ) defined in (10). Although the magnitude of each region is parameter-specific, the overall

layout is quite general since α(p1, p2, δ) is decreasing in p2, β(p1, p2, δ) is increasing in p2, and

α(p1, p2, δ) = β(p1, p2, δ) if and only if α(p1, p2, δ) = 1.

To interpret Figure 2, assume first that δ, p1, and p2 are fixed and consider what happens when

v1/v2 increases (along the vertical axis). As worker 1 becomes more productive relative to worker

2, it eventually becomes optimal to allocate the decision rights to her to avoid her being held up

by the least productive worker. Thus, HS1 ends up being optimal if v1/v2 is large enough.

Now keep δ, p1, and v1/v2 fixed, with v1/v2 just above 1, and consider what happens when p2

increases (along the horizontal axis). Initially, each worker’s likelihood of encountering issues is

small; they will thus each remain productive for a long time before any of them encounters an issue,
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Figure 2 Optimal basic worker-driven coordination scheduling rules under Assumption 1 with two workers (n= 2)

and v1 ≥ v2

HS1

PC PP

Note. Here, p1 = 0.3 and δ= 0.7. Functions α(p1, p2, δ) and β(p1, p2, δ) are defined in (10).

at which point it is optimal to coordinate, i.e., PC is optimal. As worker 2 encounters issues more

frequently, adopting PC becomes undesirable, because worker 2’s frequent issues will keep disrupt-

ing worker 1. Thus, PC becomes dominated by HS1 to ensure that the most productive worker

decides when to coordinate. As p2 increases further, worker 2 almost always wants to coordinate.

In the unlikely event that worker 2 has no issue, but worker 1 does, it becomes counterproductive

to force worker 2 to coordinate, since coordination will happen soon enough. Thus, HS1 becomes

dominated by PP, under which worker 1 can still usually coordinate when she wants to, but without

disrupting worker 2 when the latter is actually productive.

In Appendix A and Electronic Companion §EC.1, we simulate the production cycles under FB,

PC, PP, and HS, and calculate how often a worker disagrees with the outcome. Almost homogeneous

workers may consider 8-15% of meetings a waste of time. As workers are more heterogenous, these

rates can increase. It is more common though that a worker is forced to produce even when she

wants to coordinate; in these experiments, “too few meetings” is thus more likely than “too many.”

4.2. Robustness of Basic Worker-Driven Coordination Scheduling Rules

Before characterizing the performance of PC, PP, and HS in more general settings, we investigate

their robustness across all possible values of parameters (v1/v2, p1, p2, δ). As shown in Proposition

3 and Table 3, no rule is truly robust; there could be a substantial optimality loss from choosing

the wrong one when workers have asymmetric probabilities and values.

Proposition 3. Under Assumption 1 when n= 2,

V PC

V FB
≥ 1

1+ δ
,

V PP

V FB
≥ 1− δ2, and

V HSj

V FB
≥min

{
1− δ2,

1

1+ δ

}
∀j ∈ {1,2},

and the bounds are tight when either v1 = 0 or v2 = 0, when p1 ∈ {0,1}, and when p2 ∈ {0,1}.
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Table 3 Robustness of PC, PP, and HS rules

V PC/V FB

PC v1/v2
p2 1/9 1/3 1 3 9

0 86% 92% 100% 100% 100%
0.25 90% 94% 100% 95% 93%
0.5 94% 96% 99% 91% 86%
0.75 97% 98% 97% 86% 80%
1 100% 100% 94% 81% 75%

V PP/V FB

PP v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 96% 84% 76%
0.25 92% 95% 99% 93% 89%
0.5 86% 91% 100% 97% 95%
0.75 81% 89% 100% 99% 98%
1 79% 89% 100% 100% 100%

V HS1/V FB

HS1 v1/v2
p2 1/9 1/3 1 3 9

0 86% 92% 100% 100% 100%
0.25 82% 89% 99% 100% 100%
0.5 80% 87% 100% 100% 100%
0.75 79% 88% 100% 100% 100%
1 79% 89% 100% 100% 100%

Note: Here, p1 = 0.3 and δ = 0.7, as in Figure 2. In the table for each rule π ∈ {PC,PP,HS1,FB}, the bold cells correspond to the values

of (p2, v1/v2) for which π is known to implement the FB policy, per Proposition 2, and the values (p2, v1/v2) that achieve the lowest relative
performance are highlighted in gray. To save space, the table for HS2 is not reproduced here as it mirrors that for HS1.

Table 3 shows that PC, PP, and HS do particularly poorly in the corners (highlighted in gray),

i.e., when there is a large asymmetry in the workers’ coordination demands (p2 relative to p1)

or productivity (v1/v2), which can cause one worker’s output to be disproportionately negatively

affected by the other worker’s choice. Consider a case where worker 2 has no coordination demands

(i.e., p2 = 0). PC allows worker 1 to interrupt worker 2, which is the most costly when worker 2 is

much more productive than worker 1. Under PP, worker 2 would never coordinate, which could be

hugely detrimental if worker 1 is much more productive. Adding safeguards (time-based controls)

to guarantee a minimum level of coordination or production can mitigate this.

4.3. Worker-Driven Coordination Scheduling Rules Enhanced with Time-Based
Controls

The experiments in Perlow (1999) assigned specific periods every week during which production

or coordination should dominate, to ensure that the team was not held hostage by a single worker.

We explore comparable enhancements to the basic coordination scheduling rules:

• Preemptive Coordination with Minimum Cycle Duration (PC-Cmin): if coordination took place

at time 0, then no coordination is allowed until at least time Tmin ≥ 2, after which the Pre-

emptive Coordination rule applies. Formally,

APC-Cmin

(a, t) =C⇔ t≥ Tmin− 1 and
n∑

i=1

1[ai =C]≥ 1. (11)

• Preemptive Production with Maximum Cycle Duration (PP-Cmax): if coordination took place

at time 0, then coordination occurs when all workers want to but definitely no later than time

Tmax ≥ 2. Formally,

APP-Cmax

(a, t) = P ⇔ t < Tmax− 1 and
n∑

i=1

1[ai = P ]≥ 1. (12)

• Hierarchical Structure delegated to worker j with Minimum Cycle Duration (HSj-C
min): if

coordination took place at time 0, then no coordination occurs until at least time Tmin ≥ 2

and then only when worker j wants to. Formally,

AHSj -C
min

(a, t) =C⇔ t≥ Tmin− 1 and aj =C. (13)
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• Hierarchical Structure delegated to worker j with Maximum Cycle Duration (HSj-C
max): if

coordination took place at time 0, then coordination occurs when worker j wants to but

definitely no later than time Tmax ≥ 2. Formally,

AHSj -C
max

(a, t) = P ⇔ t < Tmax− 1 and aj = P. (14)

Are these enhancements worthwhile? Optimally chosen time-based controls will always (weakly)

improve on the basic rules (which are special cases of the enhanced rules with a minimum cycle

of Tmin = 2 or a maximum cycle of Tmax →∞). Comparing Tables 3 and 4 reveals that these

enhancements can indeed considerably reduce the suboptimality loss of the basic rules, especially

when workers have asymmetric coordination demands and productivity (i.e., in the corners). To

see why, consider again a worker 2 with p2 = 0. If worker 1 is less productive, letting her, under PC,

constantly interrupt worker 2 (who never wants to coordinate) can be very disruptive and costly. A

minimum cycle duration during which worker 1 is not allowed to disrupt worker 2 would mitigate

this. Similarly, under PP, worker 2 with p2 = 0 always wants to produce, which can be very costly

if worker 1 is more productive but has an issue. Setting a maximum cycle duration would limit

worker 2’s ability to dismiss worker 1’s coordination needs endlessly.

Table 5 shows the optimal minimum or maximum cycle durations, optimized over {2, . . . ,50},
for each combination of (p2, v2) when p1 = 0.3 and δ = 0.7. Naturally, whenever a basic rule (i.e.,

without time-based control) is optimal (as shown in Proposition 2), the optimal enhancement is

to not impose any time restriction, i.e., to set Tmin = 2 as the minimum cycle duration or Tmax as

large as possible (50, here) as the maximum cycle duration. Even when a specific basic rule is not

optimal, Table 5 shows that the optimal minimum or maximum cycles can be as small or as large

as permitted, so one should a priori not restrict attention to a particular set of values.

5. Large Teams

Although the basic worker-driven rules (PC, PP, and HS) are not necessarily ever optimal in larger

teams (unlike in teams of two; see Proposition 2), their simplicity makes them natural candidates to

explore. Most analytical results below refer to a possibly arbitrarily large team size, but numerically

they already apply when team size exceeds 5-10 workers.

5.1. First-Best Policy in Large Teams

The FB policy is characterized in Proposition 1: it is optimal to produce if and only if
∑n

i=1 fi(x)>ϕ

for some ϕ. Although simple to describe, it may be complicated to implement with large teams, as

it requires being explicit about every worker’s productivity. This may be uncomfortable if shared,

or if not shared it may lead to coordination decisions that are perceived as arbitrary, as we discuss

further in Appendix A. As before, we seek simple worker-driven coordination scheduling rules,

starting with the basic rules above, then proposing more advanced versions.
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Table 4 Robustness of PC-Cmax, PP-Cmax, HS-Cmin, and HS-Cmax rules

V PC-Cmin
/V FB

PC-Cmin v1/v2

p2 1/9 1/3 1 3 9

0 100% 100% 100% 100% 100%

0.25 90% 94% 100% 95% 93%

0.5 94% 96% 99% 91% 87%
0.75 97% 98% 97% 88% 85%

1 100% 100% 94% 86% 84%

V PP-Cmax
/V FB

PP-Cmax v1/v2

p2 1/9 1/3 1 3 9

0 100% 100% 96% 88% 85%

0.25 92% 95% 99% 93% 89%
0.5 88% 92% 100% 97% 95%

0.75 90% 93% 100% 99% 98%

1 100% 100% 100% 100% 100%

V HS1-Cmin
/V FB

HS1-Cmin v1/v2

p2 1/9 1/3 1 3 9

0 100% 100% 100% 100% 100%

0.25 84% 89% 99% 100% 100%
0.5 81% 87% 100% 100% 100%

0.75 79% 88% 100% 100% 100%

1 79% 89% 100% 100% 100%

V HS1-Cmax
/V FB

HS1-Cmax v1/v2

p2 1/9 1/3 1 3 9

0 86% 92% 100% 100% 100%

0.25 83% 89% 99% 100% 100%
0.5 85% 89% 100% 100% 100%

0.75 90% 92% 100% 100% 100%

1 100% 100% 100% 100% 100%

Note: Here, p1 = 0.3 and δ= 0.7, as in Table 3. Each table corresponds to a rule π ∈ {PC-Cmin,PP-Cmax,HS1-Cmin,HS1-Cmax}. The bold cells correspond to the

values of (p2, v1/v2) for which π is known to be optimal, per Proposition 2, and the combination of values (p2, v1/v2) that achieves the worst relative performance
is highlighted in gray. The tables for HS2-Cmin and HS2-Cmax are not shown as they mirror those for HS1-Cmin and HS1-Cmax.

Table 5 Optimal minimum or maximum cycle length duration of PC-Cmax, PP-Cmax, HS-Cmin, and HS-Cmax rules optimized over {2, . . . ,50}

Tmin

PC-Cmin v1/v2

p2 1/9 1/3 1 3 9

0 50 50 2 2 2

0.25 2 2 2 2 2

0.5 2 2 2 2 3
0.75 2 2 2 3 3

1 2 2 2 3 3

Tmax

PP-Cmax v1/v2

p2 1/9 1/3 1 3 9

0 50 50 8 4 4

0.25 50 50 9 6 6

0.5 3 4 50 50 50
0.75 2 3 50 50 50

1 2 2 50 50 50

Tmin

HS1-Cmin v1/v2

p2 1/9 1/3 1 3 9

0 50 50 2 2 2
0.25 4 3 2 2 2

0.5 3 2 2 2 2
0.75 2 2 2 2 2

1 2 2 2 2 2

Tmax

HS1-Cmax v1/v2

p2 1/9 1/3 1 3 9

0 50 50 50 50 50
0.25 4 5 12 50 50

0.5 3 3 50 50 50

0.75 2 3 50 50 50
1 2 2 50 50 50

Note: Here, p1 = 0.3 and δ = 0.7, as in Table 3. Each table corresponds to a rule π ∈ {PC-Cmin,PP-Cmax,HS1-Cmin,HS1-Cmax}. The bold cells correspond to

the values of (p2, v1/v2) for which the basic version of π, without time-based controls, is known to be optimal, per Proposition 2. The tables for HS2-Cmin and

HS2-Cmax are not shown as they mirror those for HS1-Cmin and HS1-Cmax.

5.2. Worker-Driven Coordination Scheduling Rules

We first consider the basic coordination scheduling rules PC, PP, and HS, which all give the right to

an individual to trigger coordination or force production, and then later consider a more advanced

version of these policies, which aggregates the opinions of k individuals.

5.2.1. Basic Worker-Driven Coordination Scheduling Rules. We know from Proposi-

tion 2 that PC, PP, and HS can each be optimal when n= 2 for a given set of parameters, but how

do they perform with larger teams? We first compare them relative to one another, then to FB. In

what follows, we assume that workers have symmetric coordination demands, i.e., pi = p for all i,

but do not restrict productivity values vi to be equal. For the HS rule, we assume without loss of

generality that worker 1 decides when to coordinate and refer to that rule without subscript.
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Proposition 4. Under Assumption 1, when pi = p for all i,

• There exists a threshold n̂ such that V HS ≥max{V PP, V PC} if and only if n≥ n̂.

• There exist two thresholds nL and nU such that V PP ≥ V PC if and only if n∈ [nL, nU).

Proposition 4 shows that no rule among PC, PP, and HS uniformly dominates the others. When

the team is large, allocating the decision rights to a single worker (HS) outperforms PP and PC,

irrespective of the relative value of that worker. A large team would almost never produce under

PC, and would almost never coordinate under PP, because any worker has a veto right. Under HS,

the production cycles have an intermediate duration; even though dictated by one worker, it is

probably more in line with most of the other workers’ needs. This does depend on our assumption

that pi = p ∀i. If decision rights are assigned to a worker with very high or low pi relative to the

others, this benefit is reduced. Hence, worker-driven coordination scheduling rules may only work

for moderately-sized teams. Between PP and PC, there is no uniform ranking as shown in the

second part of Proposition 4; the set of team sizes where PP dominates PC is convex.

We next discuss the efficiency of PC, PP, and HS relative to FB. The left panel of Figure 3a

depicts the average value per worker for all three basic worker-driven rules and the FB policy.

Specifically, it depicts V π/n, for π ∈ {FB,PC,PP,HS}. Both V PP/n and V PC/n are decreasing

in n because in larger teams there is a higher chance that a worker would exert her veto power.

V HS/n is also decreasing in n because as n increases less weight is put on worker 1, whose value

is maximized under HS1, and more weight is put on the other workers, who have no decision

rights. Even V FB/n is decreasing in n because the multiplicative nature of the workers’ interactions

(coordination involves all workers) outweighs the additive nature of their productivity. Because the

average values of each rule (V π/n) and the average FB value (V FB/n) are both decreasing in n,

the average efficiency of each rule (V π/V FB) may not necessarily evolve monotonically (although

they do with the parameters in the upper right panel of Figure 3a), even though it tends to decline

as n grows. This motivates us to consider more advanced worker-driven rules (§5.2.2), as well as

enhancing PC, PP, and HS with time-based controls (§5.3).

5.2.2. Advanced Worker-Driven Coordination Rules. The k-out-of-S-votes rule, where

coordination occurs if at least k workers from a given set S want to, generalizes PC, PP, and HS.

Because of its additional degrees of freedom (k and S), this more advanced rule outperforms the

basic rules. In fact, under Assumption 1 when vi = v for all i, this rule attains the FB outcome.

To see this, note that the FB policy (Proposition 1) then simplifies to: AFB(x) = P ⇔
∑n

i=1 1[xi =

0]>ϕ/v. Setting S = {1, . . . , n} and k= ϕ/v thus achieves the FB policy.

In this simple context, what is the optimal k? The left panel of Figure 4 indicates that the best

k is roughly one-third of the team size and grows linearly. This suggests that a simple majority
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Figure 3 Average value per worker in absolute terms (left) or relative to FB (right).

(a) Basic worker-driven coordination scheduling rules
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rule, i.e., setting k = ⌈n/2⌉, could perform quite well. Indeed, the right panel of Figure 4 shows

that such a majority rule is near-optimal in all instances.

While a simple majority rule performs well in large teams of homogenous workers, our results

from §4.2 suggest that may not hold when workers are heterogeneous, especially with respect to

productivity; in such cases it may be desirable to allow only a subset of workers to vote. The

majority rule may also be more complicated to implement in practice given that it requires tallying

votes at the beginning of each period, although the use of common team management software

(e.g., Slack or Microsoft Teams) could automate that function. We leave it for future research to

investigate the performance of such majority rules in more heterogeneous teams.

5.3. Worker-Driven Coordination Scheduling Rules with Time-Based Controls

Optimally chosen time-based controls again naturally improve each rule when the team is large, but

they are especially useful for PP and PC. We have a complete reversal of the ordering among the

rules when the team size is large: without enhancements HS dominated PP and PC (Proposition

4), but the enhanced versions of PP and PC now dominate the enhanced version of HS.

Proposition 5. Under Assumption 1, when pi = p for all i > 1, there exists a threshold ñ such

that for all n≥ ñ, min{V PC-Cmin

, V PP-Cmax} ≥max{V HS-Cmin

, V HS-Cmax}.

The left panel of Figure 3b depicts the average values of the enhanced coordination scheduling

rules, to be compared with the basic rules in the left panel of Figure 3a. Clearly, the enhance-

ments improve the performance of each basic rule. Adding a minimum cycle duration has only

a marginal impact on the performance of HS, but results in a substantial improvement for PC,

especially at large team sizes. Adding a maximum cycle duration results in a substantial perfor-

mance improvement for both HS and PP, but PP outperforms HS when the team becomes very

large. The right panel of Figure 3b depicts the relative efficiency of all enhanced coordination

scheduling rules relative to V FB. (Here, we see that the evolution is not always monotone due to

V FB/n being decreasing in n.) Although the efficiency of HS-Cmin follows a general declining trend,

similar to the basic rules, the efficiency of both HS-Cmax and PP-Cmax improves with team size.

The efficiency of PC-Cmin follows a similar upward trajectory, after an initial steep drop. Overall,

the relative efficiency of PP-Cmax, HS-Cmax, and to a smaller extent PC-Cmin, appears to improve

with n, in contrast to the basic rules: it is precisely when the basic rules perform the worst that

these enhanced rules perform the best, similar to when n= 2 in §4.3.

What explains the dominance of PC-Cmin and PP-Cmax over HS-Cmin and HS-Cmax when the

team size becomes large? As the team gets larger, both PP-Cmax and PC-Cmin converge to a fixed-

interval coordination scheduling rule. Under PC-Cmin, the cycle duration will never be smaller

than the set minimum (by definition), but it will also rarely be larger because most likely some
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team member will exert her preemptive right to coordinate. Similarly, the cycle under PP-Cmax

will rarely be shorter than the set maximum because most likely some team member would still

want to produce. By contrast, the cycle durations under HS-Cmin and HS-Cmax remain stochastic

since they depend on a specific worker (namely, worker 1) rather than on whether anyone of an

increasingly large set wants to coordinate or produce. Hence, when the team size grows large, a

fixed-interval rule may perform well, which we investigate next.

6. Fixed Interval Coordination Scheduling Rules

In contrast to the rules considered so far, which were based on the workers’ stated preferences,

we now consider a coordination scheduling rule that is only based on the time since coordination

happened last, namely FI rule (4). Let V FI(T ) be the value function under FI when the cycle

duration is T . Let T ∗ = argmaxT∈{2,3,...} V
FI(T ).

6.1. Comparison to FB Policy

FI rules are optimal in a deterministic stationary environment, but how do they perform when

issues arise stochastically? How robust are they to misspecification of the cycle duration? Unlike

most results so far, we do not need Assumption 1 to address these two questions:

Proposition 6.

V FI(T ∗)

V FB
≥ 16+

√
13

27
≈ 0.7261,

and the bound is tight with one worker (or alternatively, with a team of n identical workers with

perfectly correlated probabilities of issues) with f(0) = v and f(x) = 0 if x > 0, P[1] = 1− P[0] =

(5−
√
13)/6, and δ→ 1. Moreover,

V FI(T ∗ +1)

V FI(T ∗)
≥ T ∗

T ∗ +1
≥ 2

3

and the bound is tight with fi(0) = vi and fi(x) = 0 if x> 0 for all i= 1, . . . , n, P[1] = 1, and δ→ 1.

Proposition 6 shows that when the periodicity is chosen optimally, the suboptimality loss of FI

relative to FB is no greater than 28% across all team sizes. Although 28% may be perceived as

significant, it is quite remarkable that the efficiency loss is bounded by a constant. Moreover, the

FI rule appears quite robust, at least locally: choosing a periodicity that is one period longer than

optimal results in an optimality loss of 1/(T ∗ +1). Hence, if the optimal periodicity recommends

meeting every 4.5 days, rounding up to weekly meetings only results in a small loss of optimality.

The worst-case analysis also indicates when FI is likely to perform poorly: when workers quickly

become unproductive once they accumulate issues (binary productivity function, as in Assumption
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1), when the team size is small, when issues are likely to occur simultaneously, and when the length

of a period is short (δ→ 1). The opposite scenario suggests that FI attains good performance in

large teams, when issues are likely to occur independently, with minimal impact on productivity.

To explore this conjecture, Table 6 assesses the local robustness and relative efficiency of the

FI rule considering, as a base case, two workers, a short period (δ = 0.99), perfectly correlated

probabilities (P[1,1] = 1− P[0,0] = 0.1), and binary productivity functions (fi(x) = v if x= 0 and

fi(x) = 0 otherwise). For this case, the FI rule is (locally) robust, but rather inefficient, as shown in

the top row. It achieves 76% of the FB outcome, close to the lower bound of 72.6% from Proposition

6. The table then shows the robustness and efficiency of the FI rule for variations when (i) workers

can accumulate a certain number of issues (θi > 0) before their productivity drops to zero, (ii)

workers’ productivity declines linearly as they accumulate issues (λ= 0), (iii) workers have a higher

chance of encountering issues, (iv) workers’ probabilities of having an issue become less correlated

(but still symmetric), (v) workers’ probabilities of having an issue become asymmetric, and (vi) the

time periods become so large that the future becomes more heavily discounted (smaller δ). Overall,

FI performs much better than the bounds derived in Proposition 6 suggest. Efficiency improves

significantly if workers remain somewhat productive with a few issues (higher θi); the binary

productivity function in Assumption 1(ii) heavily penalizes suboptimal rules. Efficiency is relatively

insensitive to probabilities, provided they are positively correlated, but improves significantly as

correlation decreases. With perfectly correlated issues, if the outcome of FI is undesirable for one

worker it is also undesirable for the other; independent probabilities make it more likely that the

outcome is desirable for at least one worker. Efficiency also improves with heavier discounting,

since future actions bear less weight and both FI and FB necessarily produce in the first period.

6.2. Comparison to Basic Worker-Driven Coordination Scheduling Rules

Combining the results from §5.2 and §6.1, we have shown that the basic worker-driven coordination

scheduling rules (PP, PC, and HS) perform well in small teams, but become less efficient in large

teams, and that FI tends to perform well in large teams. The next proposition formalizes this.

Proposition 7. Under Assumption 1, if pi = p for all i > 1 and
∑∞

i=2 vi =∞, there exists a

threshold ñ such that for all n≥ ñ, V FI ≥ V HS ≥max{V PP, V PC}.

In large teams, a simple FI rule dominates allocating the decision rights to one worker, and

the latter dominates giving decision rights to all workers (Proposition 4). Decentralizing decision

rights gives too much veto power to any worker, who can then hold the rest of the team hostage.

In practice, smaller teams often adopt fluid, i.e., worker-driven, coordination scheduling rules (e.g.,

“let’s meet whenever you get stuck”) while larger teams follow more rigid rules (e.g., weekly

meetings).
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Table 6 Robustness and suboptimality of FI rule when n= 2 when fi(x) = λv+(1−λ)2v(θi +1−x)/(θi +2) for all x≤ θi and zero
otherwise

Scenario δ P[1,0] P[0,1] P[1,1] P[0,0] θ1 θ2 λ V FI(T∗+1)

V FI(T∗)
V FI(T∗)

V FB

Baseline 0.99 0 0 0.1 0.9 0 0 1 99% 76%

Higher threshold on accumulated issues 0.99 0 0 0.1 0.9 1 1 1 100% 89%
before productivity drops to zero 0.99 0 0 0.1 0.9 2 2 1 100% 93%
(higher θi for i= 1,2) 0.99 0 0 0.1 0.9 3 3 1 100% 95%

Perfectly correlated coordination demands 0.99 0 0 0.1 0.9 4 4 1 100% 97%

Linear productivity decline (λ= 0); 0.99 0 0 0.1 0.9 1 1 0 100% 89%
Perfectly correlated coordination demands 0.99 0 0 0.1 0.9 2 2 0 100% 93%

0.99 0 0 0.1 0.9 3 3 0 100% 95%
0.99 0 0 0.1 0.9 4 4 0 100% 97%

Higher coordination demands (higher P[1,1]); 0.99 0 0 0.2 0.8 0 0 1 97% 74%
Perfectly correlated coordination demands 0.99 0 0 0.3 0.7 0 0 1 97% 74%

0.99 0 0 0.4 0.6 0 0 1 92% 75%
0.99 0 0 0.5 0.5 0 0 1 88% 75%

Imperfectly correlated coordination demands 0.99 0.1 0.1 0.1 0.7 0 0 1 97% 80%
(P[1,0] ̸= 0,P[0,1] ̸= 0) 0.99 0.1 0.1 0.2 0.6 0 0 1 97% 80%

0.99 0.2 0.2 0.1 0.5 0 0 1 97% 85%
0.99 0.2 0.2 0.2 0.4 0 0 1 92% 86%

Asymmetric coordination demands 0.99 0.1 0 0.1 0.8 0 0 1 99% 78%
(P[1,0] ̸= P[0,1]) 0.99 0.2 0 0.1 0.7 0 0 1 98% 80%

0.99 0.3 0 0.1 0.6 0 0 1 96% 82%
0.99 0.4 0 0.1 0.5 0 0 1 99% 85%

Longer time periods (lower δ) 0.9 0 0 0.1 0.9 0 0 1 100% 80%
0.8 0 0 0.1 0.9 0 0 1 100% 84%
0.7 0 0 0.1 0.9 0 0 1 100% 89%

To illustrate Proposition 7, the left panel of Figure 5 superimposes the average value per worker

under FI on the left panel of Figure 3a. Because FI affects each worker equally, its average value

is flat. For small teams, FI is dominated by some basic worker-driven rules (here, PC and HS);

for large teams, FI dominates all basic worker-driven rules. In this example, the FI rule already

dominates all basic worker-driven rules for teams of 6 or more.

6.3. Comparison to Worker-Driven Coordination Scheduling Rules Enhanced with
Time-Based Controls

We showed that FI weakly dominates all basic worker-driven rules with large teams. However, FI

is not optimal: it is still dominated for any team size by PC-Cmin and PC-Cmax.

Proposition 8. Under Assumption 1,

• For any n, min{V PC-Cmin

, V PP-Cmax} ≥ V FI.

• When pi = p for all i > 1, there exists a threshold ñ such that for all n ≥ ñ, V FI ≥

min{V HS-Cmin

, V HS-Cmax}.

• Suppose that vi ≤ v for all i and 0 < p ≤ pi ≤ p < 1 for all i. For any ϵ > 0, ∃ñ such that

∀n≥ ñ, max{V PC-Cmin

, V PP-Cmax}−V FI < ϵ.
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Figure 5 Average value per worker with FI and with basic worker-driven coordination scheduling rules (left) and

worker-driven coordination scheduling rules enhanced with time-based controls (right)
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panel and π ∈ {PC-Cmin,PP-Cmax,HS-Cmin,HS-Cmax,FI} in the right panel.

To illustrate Proposition 8, the right panel of Figure 5 superimposes the average value per worker

under FI on the left panel of Figure 3b. By Proposition 5, for large teams PC-Cmin and PP-Cmax

dominate HS-Cmin and HS-Cmax. The first two points of Proposition 8 extend this by showing

that FI lies between these two. However, as the team becomes very large, PC-Cmin and PP-Cmax

effectively become equivalent to FI (the third point of Proposition 8). Given that the worker-driven

coordination scheduling rules enhanced with time-based controls are more complex to implement

than FI rules, Proposition 8 makes a case for a purely time-based rule for large teams. For small

teams, a more fluid worker-driven approach is preferable, ideally with safeguards to prevent the

team from being held up by a single member.

7. Discussion and Conclusions

Workers in knowledge-intensive industries often complain of having too many meetings; yet, busi-

nesses rarely think about how to set meeting scheduling rules. Here we investigate the efficiency

and robustness of various coordination scheduling rules, using a stylized game-theoretic model.

We consider a situation where workers are engaged in a common activity, which can be divided

into independent, parallel tasks, but necessitates occasional in-depth coordination that cannot be

accomplished by email or in a short casual meeting. Coordination is useful because it helps address

the issues workers have encountered, but it takes time away from production.

Table 7 summarizes the high-level prescriptions suggested by our analysis.

• When the team is small, the most basic worker-driven coordination scheduling rules (PC, PP,

HS) perform well (Proposition 2) unless workers are heterogeneous (Proposition 3), in which

case one needs to build in time-based controls (Table 4).
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Table 7 Key suggested prescriptions

Team Size
Worker Productivity Heterogeneity

Low High

Small
PC, PP, HS are adequate; PC-Cmin, PP-Cmax

which rule is preferred HS-Cmin, HS-Cmax

depends on parameters
Intermediate PC-Cmin, PP-Cmax;

PC-Cmin, PP-Cmax

(workers have equal HS is adequate
coordination demands)

Large PC-Cmin, PP-Cmax; PC-Cmin, PP-Cmax;
(workers have equal FI is nearly as good FI is nearly as good

coordination demands)

• For intermediate team sizes, HS dominates PC and PP (Proposition 4), but adding time-based

controls to the latter two rules is the most robust choice, especially when workers are quite

heterogeneous (Proposition 5).

• When the team size becomes large, an FI rule generally performs well (Proposition 7), even

though it is marginally dominated by PC-Cmin and PP-Cmax (Proposition 8).

Our results rely on several simplifying assumptions, so further research is needed to test their

robustness. Throughout, we assume a binary productivity function. Exploration of more general

productivity functions in Appendix B yields the following observations. First, with two workers, the

general structure of the equilibrium still holds. That structure hinges on the binary nature of the

workers’ decisions (coordinate vs. produce), so the exact productivity function is less relevant. We

observe numerically that the sensitivity of the basic worker-driven rules to the problem parameters

remains similar to that with a binary productivity function, suggesting that the first takeaway

carries over. Second, the main driver of the dynamics in large teams is that one worker can hold all

others hostage under PC and PP. Hence, the second and third takeaways do not depend directly

on the productivity function. Third, additional analytical complications arise under PP even with

two workers, rendering any formal characterization very challenging.

Our model makes numerous other assumptions, including: the frequency with which issues arise

is exogenous, issues never get resolved by themselves, meetings should involve all workers, meetings

resolve all issues, meeting duration is independent of the number of issues, workers do not incur

a setup time to go back to production, the prospect of an upcoming meeting does not boost a

worker’s productivity, the productivity function is separable, and the activity does not have a finite

deadline. Relaxing these would bring the model closer to reality. Some of these extensions, such

as allowing the time needed for coordination to vary with the number of issues to be resolved,

might be analytically challenging as the FB policy may no longer be a threshold policy (it may

be optimal to coordinate preemptively to avoid long meetings or when the number of accumulated

issues is large, but not in between). Some of our results are generalizable to account for worker
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unavailability, random coordination meeting durations, or not requiring all workers to be present

for coordination. Moreover, our stylized model could be embedded into a broader organizational

design model, e.g., to study who should be required to attend a coordination meeting, trading

off their opportunity cost of time with their ability to get issues resolved. A generalization of the

model could study collaborative dynamics in addition to coordination dynamics by considering

a non-separable production function f(x1, . . . , xn) shared among workers according to some rule.

We limited ourselves to coordination meetings aimed at resolving issues that prevented a worker

from being productive. Other types of coordination meeting are daily scrum meetings or huddles,

or meetings to discuss project management policies or team norms. The issues we model are

experienced by individual workers, and resolving them only increases that worker’s productivity.

We do not necessarily capture all issues that relate to the project content, or exclude all those

that relate to its management. For instance, a meeting to address a worker talking too loud in the

next cubicle causing their neighbor to be unproductive could fit our model, while a content-focused

meeting consisting of a performance review would not.

With Microsoft’s launch of Viva Insights, which suggests blocking off focus time for deep work and

identifies one’s key collaborators, current technology seems ripe for more effective time management

in organizations. Yet, it remains ignorant of the negative externality such time blocking may create

on team members since it is based only on individual preferences. We hope our work will lead

to further research on more coordinated time blocking, including further analysis of the hybrid

policies in the experiments in Perlow (1999), where some specific time slots are set aside during

which production or coordination dominates.
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Appendix A: Average Cycle Durations and Individual Workers’ Perceptions

Here we examine the effect of the coordination scheduling rules on individual workers. When are there “too

many meetings,” and when too few? A rule will be easier to enforce if it does not dictate outcomes workers

are not in favor of. We consider the FB policy in this appendix and consider the four basic rules PC, PP,

HS1, and FI in an electronic appendix §EC.1. For each rule π ∈ {FB,PC,PP,HS1,FI}, we compute, through

simulation, the average cycle duration, and the inverse of meeting frequency. As in Figure 2 and Table 3, we

set p1 = 0.3, δ= 0.7, and vary p2 ∈ {0,0.25,0.5,0.75,1} and v1/v2 ∈ {1/9,1/3,1,3,9}. For each rule and set of

values p2 and v1/v2, we first compute the value functions V π
i (x, t) for all i= 1,2, 0≤ x≤ (10,10), 0≤ t≤ 30

by value iteration. Using these value-to-go functions, we then simulate 20,000 periods for each rule and

report in Tables A-1 - EC.4 the mean cycle durations, the frequency of coordination periods while worker i

https://ssrn.com/abstract=1850607
https://ssrn.com/abstract=1850607
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Table A-1 FB average cycle durations and frequencies of outcomes involving some disagreement

Average Cycle Duration

FB v1/v2
p2 1/9 1/3 1 3 9

0 ∞ ∞ 4.3 4.4 4.3
0.25 5.0 5.0 3.1 4.4 4.3
0.5 3.0 3.0 4.8 4.4 4.4
0.75 2.3 2.3 4.5 4.4 4.3
1 2.0 2.0 4.3 4.3 4.3

Worker preferring opposite outcome

Outcome Worker 1 Worker 2

Coordination

P[AFB(x) =C and aFB
1 (x) = P ]

FB v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 0% 0% 0%
0.25 7% 8% 12% 0% 0%
0.5 18% 18% 0% 0% 0%
0.75 27% 27% 0% 0% 0%
1 35% 35% 0% 0% 0%

P[AFB(x) =C and aFB
2 (x) = P ]

FB v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 23% 23% 23%
0.25 0% 0% 15% 11% 11%
0.5 0% 0% 0% 5% 5%
0.75 0% 0% 0% 2% 2%
1 0% 0% 0% 0% 0%

Production

P[AFB(x) = P and aFB
1 (x) =C]

FB v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 0% 0% 0%
0.25 38% 38% 0% 0% 0%
0.5 16% 15% 10% 0% 0%
0.75 5% 5% 3% 0% 0%
1 0% 0% 0% 0% 0%

P[AFB(x) = P and aFB
2 (x) =C]

FB v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 0% 0% 0%
0.25 0% 0% 0% 29% 28%
0.5 0% 0% 37% 41% 42%
0.75 0% 0% 48% 50% 48%
1 0% 0% 54% 54% 54%

Note: Here, p1 = 0.3 and δ = 0.7 as in Figure 2. The average cycle durations and frequencies of outcomes are

estimated from simulation over 20,000 transitions. The highlighted cells are those with the most symmetric workers.

wanted to produce (P[Aπ(x, t) =C and aπ
i (x, t) = P ]), and the frequency of production periods while worker

i wanted to coordinate (P[Aπ(x, t) = P and aπ
i (x, t) =C]).

Consider first the FB policy, in Table A-1. Naturally, the mean cycle duration is sensitive to worker 2’s

coordination demands p2 whenever v2 > v1. When v2 > v1 and worker 2 never encounters issues (p2 = 0), the

optimal cycle duration is infinite, whereas when worker 2 always encounters issues (p2 = 1), the optimal cycle

duration is as small as possible, i.e., 2 periods. The non-monotone character of the mean cycle duration of

the FB policy with respect to p2 and v1/v2 is due to the change in the structure of the FB policy, alternating

between PC, PP, HS1, and HS2 as these parameters change (Proposition 2).

Examining the outcomes involving disagreement shows that in about half of the scenarios, worker i never

disagrees with the outcome, but also that for about a third of the scenarios, worker i often disagrees. For the

latter case, consider v1/v2 ∈ {1/9,1/3} and p2 = 1, so that coordination happens every other period. Since

p1 = 0.3, in 70% of the cases when coordination is triggered worker 1 wants to produce. This happens every

other period, so the likelihood that coordination occurs but worker 1 wants to produce equals 70%/2 = 35%;

worker 1 will feel that 35% of meetings are wasted. Conversely, when p2 = 0, worker 2 never wants to

coordinate, so every time coordination takes place (once every 4.3 periods, i.e., 23% of the time, when
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Figure B-1 Equilibrium policies under FB, PC, PP, and HS with general productivity functions
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Note. Here, p1 = 0.3, p2 = 0.1, δ = 0.75, fi(xi) = vi(1 − xi/7) for i = 1,2, v1 = 1.4 and v2 = 1. For any π ∈

{FB,PC,PP,HS}, a particular cell x is colored in black when Aπ(x) =C, and in white when Aπ(x) = P .

v1/v2 ∈ {1,3,9}), worker 2 disagrees with the outcome. Almost equal workers (p1 = 0.3, p2 = 0.25, v1/v2 = 1)

will feel that 12% (worker 1) or 15% (worker 2) of meetings are wasted. Overall, Table A-1 shows that even

under the FB policy, workers will feel that some meetings are wasted.

Appendix B: Equilibrium Characterization under General Productivity Functions

Here we characterize the equilibrium outcomes with two workers under PC, PP, and HS when Assumption

1(ii) is relaxed. In §B.1 we consider a more general productivity function fi(x), without a base productivity

value, and in §B.2 a binary productivity function with a base productivity value. These two cases can have

opposing effects. The general productivity function may induce workers to want to coordinate early, even if

they have not accumulated many issues, so as to operate at full productivity. Conversely, a base productivity

value may reduce the need to coordinate even with many accumulated issues.

B.1. General Productivity Function with No Base Value

We first consider a general productivity function fi(x) with no base value, i.e., such that f ′(x)≤ 0, fi(x) = 0

for all x≥ xi, and fi(0)> 0. The structures of the equilibrium policies under PC and HS characterized in

Proposition 2 still hold. The equilibrium policy under PP is quite similar to that in Proposition 2, with

additional peculiarities that makes a full analytical characterization challenging. Proofs appear in §EC.2.5.

Figure B-1 illustrates the equilibrium policies under FB and the PC, PP, and HS rules. By Proposition

1, the FB policy policy involves producing if and only if
∑

i
fi(xi)>ϕ for some ϕ, so production occurs in a

connected region anchored at the origin, the white area in the leftmost panel of Figure B-1.

Under PC, the equilibrium policy yields production in the lower-left of the nonnegative area x≥ 0 and

coordination otherwise (second panel in Figure B-1). This generalizes Lemmas EC.1-EC.2 for a binary

productivity function, where production was optimal if and only if x= 0.

Proposition B-1. Suppose that n= 2 and that Assumption 1(i) holds. There exists a threshold state x̂PC

satisfying fi(x̂
PC
i − 1)> δ(1− δ)V PC

i ≥ fi(x̂
PC
i ) for i= 1,2 such that APC(x) = P if and only if x< x̂PC.

Call x̂PC the coordination trigger point: coordination occurs in equilibrium as soon as x ≥ x̂PC. The

PC coordination trigger point is lower than that in the FB. Specifically, if x ≥ x̂PC, then APC(x) = C, so

δ(1−δ)
(
V PC
1 (0)+V PC

2 (0)
)
≥ f1(x̂

PC
1 )+f2(x̂

PC
2 ) by Proposition B-1. Therefore, δ(1−δ)V FB(0)≥ f1(x̂

PC
1 )+

f2(x̂
PC
2 ). By Proposition 1, this implies that AFB(x) =C.
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Figure B-2 Equilibrium strategies under PP with general productivity function

Note. Worker 1’s strategy is to produce (P1) in all states lying above the solid line and coordinate (C1) otherwise.

Worker 2’s strategy is to produce (P2) in all states lying below the dashed line and coordinate (C2) otherwise.

APP(x) =C if and only if aPP
1 (x) = aPP

2 (x) =C.

In the PP equilibrium outcome, similar to Proposition 2, coordination happens in an upper-right area

of the nonnegative orthant and production happens in both the corresponding upper-left and lower-right

areas. However, unlike Proposition 2, production may not happen everywhere in the lower-left area. The

third panel in Figure B-1 shows P occurring in states (3,2) and (2,3) but not in (3,3).

Proposition B-2. Suppose that n= 2 and that Assumption 1(i) holds. There exists a state x̂PP, satisfying

fi(x̂
PP
i −1)> δ(1− δ)V PP

i ≥ fi(x̂
PP
i ) for i= 1,2 such that APP(x) =C if x≥ x̂PP; APP(x) = P if xi ≥ x̂PP

i and

x−i < x̂PP
−i for i= 1,2; for states x< x̂PP, if APP(x) = P , then APP(y) = P if yi ≤ xi and y−i ≥ x−i for either

i= 1 or i= 2 or both.

In the lower-left, i.e., x < x̂PP, the structure of the equilibrium is now more complicated. If production

happens in some state y, then it also happens in all states weakly above and to the left or below and to

the right of y. However, coordination can emerge in some states x< x̂PP, due to the behavior of the value

function of any worker with respect to the other worker’s stock of issues. Workers never benefit from having

issues themselves; V π
i (xi, x−i) is nonincreasing in xi for π ∈ {PC,PP}. As the other worker (−i) accumulates

more issues, it becomes more likely that she will want to coordinate soon. Under PC, worker i then loses

control over which outcome will occur, but under PP she then gains control. Worker i never benefits from

worker −i’s issues under PC (V PC
i (xi, x−i) is nonincreasing in x−i; Lemma EC.14), but she benefits from

them under PP (V PP
i (xi, x−i) is nondecreasing in x−i; Lemma EC.17). By (5), worker i’s decision consists

of comparing δV π
i (0) to fi(xi) + δE [V π

i (x+ ξ)] and the latter is decreasing in xi and decreasing (resp.

increasing) in xi when π=PC (resp. when π=PP). Hence, under PP worker i’s “indifference curve” between

coordinating and producing is increasing in x as shown in Figure B-2, potentially leading to ‘pockets’ where

both workers want to coordinate even though both would choose to produce if they each had one more issue.

In the HS equilibrium, as before, the worker who has all decision rights wants to coordinate when her

stock of issues is large, and produce otherwise; see the rightmost panel in Figure B-1.
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Table B-1 Robustness of PC, PP, and HS rules with piecewise-constant productivity functions

V PC/V FB

PC v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 100% 100% 100%
0.25 100% 100% 100% 100% 100%
0.5 100% 100% 100% 100% 100%
0.75 100% 100% 100% 100% 100%
1 100% 100% 100% 100% 99%

V PP/V FB

PP v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 100% 100% 100%
0.25 100% 100% 100% 100% 100%
0.5 99% 99% 100% 100% 100%
0.75 93% 94% 97% 99% 100%
1 81% 85% 91% 97% 100%

V HS1/V FB

HS1 v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 100% 100% 100%
0.25 100% 100% 100% 100% 100%
0.5 99% 99% 100% 100% 100%
0.75 93% 94% 97% 99% 100%
1 81% 85% 91% 97% 100%

Note: Here, p1 = 0.3, δ= 0.95, and fi(xi) = vi if xi ≤ 6 and fi(xi) = 0 otherwise for i= 1,2. The combination of values (p2, v1/v2) that achieves

the lowest relative performance is highlighted in gray.

Table B-2 Robustness of PC, PP, and HS rules with linear productivity functions

V PC/V FB

PC v1/v2
p2 1/9 1/3 1 3 9

0 95% 97% 99% 100% 100%
0.25 97% 98% 99% 98% 98%
0.5 98% 99% 99% 99% 98%
0.75 99% 99% 99% 97% 95%
1 100% 100% 98% 95% 92%

V PP/V FB

PP v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 99% 97% 95%
0.25 98% 99% 99% 98% 97%
0.5 95% 96% 98% 99% 98%
0.75 90% 93% 97% 99% 100%
1 84% 89% 95% 99% 100%

V HS1/V FB

HS1 v1/v2
p2 1/9 1/3 1 3 9

0 95% 97% 99% 100% 100%
0.25 95% 97% 99% 100% 100%
0.5 93% 95% 98% 100% 100%
0.75 89% 92% 97% 99% 100%
1 84% 88% 95% 99% 100%

Note: Here, p1 = 0.3, δ = 0.95, and fi(xi) = vi(1− xi/7) for i = 1,2. The combination of values (p2, v1/v2) that achieves the lowest relative
performance is highlighted in gray.

Proposition B-3. Suppose that n= 2 and that Assumption 1(i) holds. There exists a state x̂HS
1 satisfying

f1(x̂
HS
1 − 1)> δ(1− δ)V HS

1 ≥ f1(x̂
HS
1 ) such that AHS(x) = P if and only if x1 < x̂HS

1 .

Tables B-1 and B-2 depict the robustness of the basic worker-driven coordination scheduling rules, for

piecewise constant and linear productivity functions. Similar to Table 3, the basic worker-driven rules suffer

when workers have asymmetric probabilities and values. Yet, the suboptimality gap is lower than under

Assumption 1(ii) because the more general productivity function is more forgiving to suboptimal rules (as

also highlighted for Table 6).

B.2. Binary Productivity Function with a Base Value

We now consider a binary productivity function fi(x) with a base value: fi(x) = bi +(vi− bi)]1[x= 0], with

vi > bi ≥ 0. When bi > 0, worker i may no longer want to coordinate whenever xi > 0, unlike Lemma EC.1.

The equilibrium under PC is the first to change as bi increases because PC is the rule that favors the most

coordination, followed by PP and HSi. The equilibrium under HS−i is independent of bi. The proof is in

§EC.2.6.

Proposition B-4. Suppose that n= 2, that Assumption 1(i) holds, and that fi(x) = bi+(vi−bi)]1[x= 0],

with vi > bi ≥ 0 for i= 1,2. For any i, there exist some thresholds bi and bi with bi ≤ bi such that

• for any b≤ bi, a
PC
i (x) = aPP

i (x) = aHSi
i (x) = a

HS−i

i (x) =C⇔ xi ≥ 1;

• for any b≤ bi, a
PP
i (x) = aHSi

i (x) = a
HS−i

i (x) =C⇔ xi ≥ 1;

• for any b > bi, a
HS−i

i (x) =C⇔ xi ≥ 1.
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Appendix C: Team Incentives

Assume that, while producing, each worker i is paid an incremental wage γfi(xi) + (1 − γ)
∑

j ̸=i
fj(xj),

with 1/2≤ γ ≤ 1. No wage is paid when coordinating. We assume two workers, i.e., n= 2. This analysis is

preliminary as we ignore team moral hazard issues.

With team incentives, workers’ preferred outcomes are more aligned. When γ < 1, worker i may no longer

choose to coordinate whenever xi > 0 and x−i = 0, unlike Lemma EC.1, and to produce whenever xi = 0 and

x−i > 0, unlike Lemma EC.2. Hence, as (1−γ)/γ increases, the equilibrium policy under PC, PP, and HS may

be different from that in Proposition 2. Let Aπ
γ(x) be the equilibrium policy under rule π when weight (1−γ)

is put on team incentives. When γ = 1/2, workers’ preferred outcomes are perfectly aligned: for any rule π,

aπ
1(x, t) = aπ

2(x, t). If π is either PC, PP, or HS as defined by (1), (2), and (3), then limγ→1/2A
π
γ(x) =AFB(x).

The robustness of the equilibrium policies induced by PC, PP, and HS to team incentives depends on the

parameters, through α(p1, p2, δ) defined in (10). The proof appears is in §EC.2.6.

Proposition C-1. Suppose that n = 2, that Assumption 1 holds, that workers receive γfi(xi) + (1 −

γ)f−i(x−i) for i= 1,2, with 1/2≤ γ ≤ 1, and that v1 ≥ v2. Then, for any γ,

• If α(p1, p2, δ) ≥ 1, then
(
AHS2

γ (x) = P ⇔ x2 = 0
)
=⇒

(
APP

γ (x) =C⇔ x≥ 1
)
=⇒

(
APC

γ (x) = P ⇔ x= 0
)

and
(
AHS2

γ (x) = P ⇔ x2 = 0
)
=⇒

(
AHS1

γ (x) = P ⇔ x1 = 0
)
;

• If α(p1, p2, δ)≤ 1, then
(
APC

γ (x) = P ⇔ x= 0
)
=⇒

{(
AHS1

γ (x) = P ⇔ x1 = 0
)
and

(
AHS2

γ (x) = P ⇔ x2 = 0
)}

and
{(

AHS1
γ (x) = P ⇔ x1 = 0

)
or
(
AHS2

γ (x) = P ⇔ x2 = 0
)}

=⇒
(
APP

γ (x) =C⇔ x≥ 1
)
.

Proposition C-1 shows that, when α(p1, p2, δ) ≥ 1 and v1 ≥ v2, our characterization of the equilibrium

policies under PC in our base model (when γ = 1) is more robust to a decrease in γ than that under PP,

and that those under rules PC, PP and HS1 are all more robust than that under HS2. This is intuitive since,

by Proposition 2, when α(p1, p2, δ)≥ 1, either PC or HS1 already achieves FB without team incentives, so

adding them will thus not change anything. Either APC
γ (x) or AHS1

γ (x) is completely insensitive to γ, for any

γ ∈ [1/2,1], depending on whether v1/v2 ≤ α(p1, p2, δ). A
HS2
γ (x) is the least robust: as soon as γ decreases

from 1, worker 2 becomes more likely to coordinate even if she is fully productive, if worker 1 has accumulated

issues.

Conversely, when α(p1, p2, δ)≤ 1 and v1 ≥ v2, it is our characterization of the equilibrium policies when

γ = 1 under PP and potentially either HS1 or HS2 that are the most robust to a decrease in γ. Again, this

is intuitive since, by Proposition 2, when α(p1, p2, δ)≤ 1, either PP or HS1 already achieves the FB policy

without team incentives. Surprisingly, HS2 (never optimal when v1 ≥ v2) may be more robust than HS1, in

particular when both workers’ productivities are comparable and worker 2 has high coordination demands

(so that PP is optimal; see Figure 2). In this case, worker 1 may be tempted to produce even if she has

accumulated issues whenever worker 2 is fully productive, whereas in the symmetric scenario, worker 2 would

prefer to coordinate. APC(x) is the least robust: as soon as γ decreases from 1, worker 2 becomes more likely

to produce even if she has accumulated issues, if worker 1 is fully productive.

In sum, the first equilibrium policies that will be affected by team incentives are APC(x) if α(p1, p2, δ)≤ 1,

AHS2(x) if α(p1, p2, δ)≥ 1 and v1 ≥ v2, and AHS1(x) if α(p1, p2, δ)≥ 1 and v2 ≥ v1.
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Appendix EC.1: Average Cycle Durations and Individual Workers’
Perceptions under Basic Coordination Rules

In this electronic appendix, we pursue our analysis of the effect of coordination scheduling rules on indi-

vidual workers, started in Appendix A for the FB policy, by considering here the following basic rules

π ∈ {FB,PC,PP,HS1,FI}. For each rule, we compute, through simulation, the average cycle duration, and

the inverse of meeting frequency. We set p1 = 0.3, δ = 0.7, and vary p2 ∈ {0,0.25,0.5,0.75,1} and v1/v2 ∈
{1/9,1/3,1,3,9}. For each rule and set of values p2 and v1/v2, we first compute the value functions V π

i (x, t)

for all i= 1,2, 0≤ x≤ (10,10), 0≤ t≤ 30 by value iteration. Using these value-to-go functions, we then sim-

ulate 20,000 periods for each rule and report in Tables A-1 - EC.4 the mean cycle durations, the frequency of

coordination periods while worker i wanted to produce (P[Aπ(x, t) =C and aπ
i (x, t) = P ]), and the frequency

of production periods while worker i wanted to coordinate (P[Aπ(x, t) = P and aπ
i (x, t) =C]).

Table EC.1 PC average cycle durations and frequencies of outcomes involving some disagreement

Average Cycle Duration

PC v1/v2
p2 1/9 1/3 1 3 9

0 4.3 4.3 4.4 4.3 4.3
0.25 3.1 3.1 3.1 3.1 3.1
0.5 2.6 2.5 2.5 2.5 2.5
0.75 2.2 2.2 2.2 2.2 2.2
1 2.0 2.0 2.0 2.0 2.0

Worker preferring opposite outcome

Outcome Worker 1 Worker 2

Coordination

P[APC(x) =C and aPC
1 (x) = P ]

PC v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 0% 0% 0%
0.25 12% 11% 12% 12% 12%
0.5 21% 21% 21% 21% 21%
0.75 29% 29% 29% 29% 29%
1 35% 34% 35% 35% 35%

P[APC(x) =C and aPC
2 (x) = P ]

PC v1/v2
p2 1/9 1/3 1 3 9

0 23% 23% 23% 23% 23%
0.25 15% 15% 15% 15% 15%
0.5 9% 9% 9% 9% 9%
0.75 4% 4% 4% 4% 4%
1 0% 0% 0% 0% 0%

Production

P[APC(x) = P and aPC
1 (x) =C]

PC v1/v2
p2 1/9 1/3 1 3 9

0
0.25
0.5 N/A; always 0%
0.75
1

P[APC(x) = P and aPC
2 (x) =C]

PC v1/v2
p2 1/9 1/3 1 3 9

0
0.25
0.5 N/A; always 0%
0.75
1

Note: Here, p1 = 0.3 and δ = 0.7 as in Figure 2. The average cycle durations and frequencies of outcomes are

estimated from simulation over 20,000 transitions. The highlighted cells are those with the most symmetric workers.

Consider first the PC rule, in Table EC.1. Since the sojourn times in each state x are now independent of
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Table EC.2 PP average cycle durations and frequencies of outcomes involving some disagreement

Average Cycle Duration

PP v1/v2
p2 1/9 1/3 1 3 9

0 ∞ ∞ ∞ ∞ ∞
0.25 6.2 6.3 6.2 6.2 6.2
0.5 4.7 4.8 4.8 4.8 4.8
0.75 4.5 4.6 4.4 4.4 4.4
1 4.4 4.3 4.3 4.3 4.3

Worker preferring opposite outcome

Outcome Worker 1 Worker 2

Coordination

P[APP(x) =C and aPP
1 (x) = P ]

PP v1/v2
p2 1/9 1/3 1 3 9

0
0.25
0.5 N/A; always 0%
0.75
1

P[APP(x) =C and aPP
2 (x) = P ]

PP v1/v2
p2 1/9 1/3 1 3 9

0
0.25
0.5 N/A; always 0%
0.75
1

Production

P[APP(x) = P and aPP
1 (x) =C]

PP v1/v2
p2 1/9 1/3 1 3 9

0 100% 100% 100% 100% 100%
0.25 32% 31% 29% 30% 29%
0.5 9% 9% 10% 10% 9%
0.75 3% 3% 3% 3% 3%
1 0% 0% 0% 0% 0%

P[APP(x) = P and aPP
2 (x) =C]

PP v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 0% 0% 0%
0.25 18% 20% 21% 21% 21%
0.5 37% 37% 38% 38% 38%
0.75 48% 49% 47% 47% 48%
1 55% 54% 54% 54% 53%

Note: Here, p1 = 0.3 and δ = 0.7 as in Figure 2. The average cycle durations and frequencies of outcomes are

estimated from simulation over 20,000 transitions. The highlighted cells are those with the most symmetric workers.

the workers’ relative productivities, the reported statistics are roughly invariant with respect to v1/v2. The

average cycle durations become shorter as p2 increases, which then increases the likelihood that coordination

is triggered while worker 1 wants to produce. The cycle durations are shorter than in the FB since coordination

occurs as soon as one worker has an issue. If the workers are almost homogenous, they will find 12% (worker

1) or 15% (worker 2) of meetings a waste of time, similar to the FB. By definition, PC never imposes

production if one worker wants to coordinate. Table EC.1 reveals a likelihood of a worker disagreeing with

an outcome of at most 35%—a stark contrast with the FB in which this can be 100%.

Consider now the PP rule, in Table EC.2. Similar to PC, the sojourn times in each state x are independent

of the workers’ productivities, which makes the reported statistics roughly invariant with respect to v1/v2,

and the average cycle durations become shorter as p2 increases. The cycle durations are now longer than

in the FB since coordination only occurs when both workers have issues. By definition, PP never imposes

coordination if one worker wants to produce, so no worker ever considers a meeting a waste. On the other

hand, when p2 = 0, the production cycle duration is infinite even though worker 1 always wants to coordinate.

We now turn to the HS1 rule, in Table EC.3. The sojourn times in each state x are again independent

of the workers’ productivities, which makes the reported statistics roughly invariant with respect to v1/v2.



e-companion to : Scheduling Rules for Team Coordination ec3

Table EC.3 HS1 average cycle durations and frequencies of outcomes involving some disagreement

Average Cycle Duration

HS1 v1/v2
p2 1/9 1/3 1 3 9

0 4.3 4.4 4.3 4.4 4.3
0.25 4.3 4.3 4.3 4.3 4.4
0.5 4.4 4.3 4.3 4.3 4.3
0.75 4.4 4.3 4.3 4.4 4.3
1 4.3 4.3 4.2 4.3 4.3

Worker preferring opposite outcome

Outcome Worker 1 Worker 2

Coordination

P[AHS1(x) =C and aHS1
1 (x) = P ]

HS1 v1/v2
p2 1/9 1/3 1 3 9

0
0.25
0.5 N/A; always 0%
0.75
1

P[AHS1(x) =C and aHS1
2 (x) = P ]

HS1 v1/v2
p2 1/9 1/3 1 3 9

0 23% 23% 23% 23% 23%
0.25 11% 11% 11% 11% 11%
0.5 5% 5% 5% 6% 6%
0.75 2% 2% 2% 2% 2%
1 0% 0% 0% 0% 0%

Production

P[AHS1(x) = P and aHS1
1 (x) =C]

HS1 v1/v2
p2 1/9 1/3 1 3 9

0
0.25
0.5 N/A; always 0%
0.75
1

P[AHS1(x) = P and aHS1
2 (x) =C]

HS1 v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 0% 0% 0%
0.25 29% 28% 29% 29% 29%
0.5 42% 51% 41% 41% 41%
0.75 49% 49% 48% 50% 50%
1 54% 54% 53% 54% 54%

Note: Here, p1 = 0.3 and δ = 0.7 as in Figure 2. The average cycle durations and frequencies of outcomes are

estimated from simulation over 20,000 transitions. The highlighted cells are those with the most symmetric workers.

The mean cycle durations are also independent of p2 since worker 1 is the sole decision-maker, and hence

always agrees with the outcome. Worker 2 may disagree up to 54% of the time, similar to the worst case in

FB and PP. From a worst-case perspective, worker 2 is no worse off under HS1 than under FB, and worker 1

is (naturally) better off. When both workers are almost equal, worker 2 will consider 11% of meetings called

by worker 1 a waste of time.

Finally, consider FI in Table EC.4. For each set of values for p2 and v1/v2, the cycle duration is optimized

over {2, . . . ,29}. Due to the discrete nature of this optimization problem, the frequencies of outcomes involving

some disagreement may not be monotonic. Although the (optimized) cycle durations follow a similar pattern

to the FB average cycle durations (see Table A-1), they sometimes deviate from simply rounding those off

to obtain a discrete fixed interval. For instance, when p2 = 0 and v1/v2 = 1, the optimal FI cycle is 8 periods,

almost twice as large as the corresponding FB average cycle duration of 4.3. Based on Proposition 6, we

know that V FI(T ∗ + 1)/V FI(T ∗) ≥ T ∗/(T ∗ + 1), so when T ∗ = 8, we expect V FI(T ) to be quite robust to

suboptimal choices of T (indeed, we find that V FI(4)/V FI(8)≈ 97%), but it is interesting that rounding off

the FB solution does not necessarily serve as a good baseline for T ∗. In stark contrast with all other policies

and rules, for almost any set of values of p2 and v1/v2, both workers may disagree with the implemented
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Table EC.4 FI average cycle durations and frequencies of outcomes involving some disagreement

Average Cycle Duration

FI v1/v2
p2 1/9 1/3 1 3 9

0 29.0 29.0 8.0 4.0 4.0
0.25 4.0 4.0 4.0 4.0 4.0
0.5 3.0 3.0 3.0 3.0 3.0
0.75 2.0 2.0 3.0 3.0 3.0
1 2.0 2.0 2.0 3.0 3.0

Worker preferring opposite outcome

Outcome Worker 1 Worker 2

Coordination

P[AFI(t) =C and aFI
1 (x) = P ]

FI v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 1% 9% 9%
0.25 9% 9% 8% 9% 9%
0.5 16% 16% 16% 17% 16%
0.75 35% 35% 17% 16% 16%
1 35% 35% 35% 16% 16%

P[AFI(t) =C and aFI
2 (x) = P ]

FI v1/v2
p2 1/9 1/3 1 3 9

0 3% 3% 13% 25% 25%
0.25 11% 11% 10% 10% 10%
0.5 9% 8% 8% 8% 8%
0.75 12% 13% 2% 2% 2%
1 0% 0% 0% 0% 0%

Production

P[AFI(t) = P and aFI
1 (x) =C]

FI v1/v2
p2 1/9 1/3 1 3 9

0 85% 85% 50% 20% 21%
0.25 20% 20% 20% 20% 20%
0.5 10% 10% 10% 10% 10%
0.75 0% 0% 9% 10% 10%
1 0% 0% 0% 10% 10%

P[AFI(t) = P and aFI
2 (x) =C]

FI v1/v2
p2 1/9 1/3 1 3 9

0 0% 0% 0% 0% 0%
0.25 17% 17% 17% 17% 17%
0.5 16% 17% 17% 17% 16%
0.75 0% 0% 25% 25% 25%
1 0% 0% 0% 33% 33%

Note: Here, p1 = 0.3 and δ = 0.7 as in Figure 2. The average cycle durations and frequencies of outcomes are

estimated from simulation over 20,000 transitions. For each set of values for p2 and v1/v2, the cycle duration is
optimized over {2, . . . ,29}. The highlighted cells are those with the most symmetric workers.

outcome, because the FI rule is time-based and not worker-driven. Nevertheless, the frequency of outcomes

involving disagreement is bounded by 85%, in contrast to the 100% possible under FB and PP, but it is

higher than the worst case under PC (35%) and HS1 (54%). Nearly equal workers will consider 8% (worker

1) or 10% (worker 2) of meetings wasted. Overall, when workers are almost homogenous, they may consider

up to 15% of meetings to be wasted, depending on the scenario. When workers are not homogenous, the less

valuable worker may find up to 35% of meetings a waste.

Appendix EC.2: Proofs of Statements

This electronic appendix is organized as follows. We provide the proofs of the results of §3 in §EC.2.1, of

those of §4 in §EC.2.2, of those of §5 in §EC.2.3, of those of §6 in §EC.2.4, of those from Appendix B.1 in

§EC.2.5, and of those from Appendices B.2 and C in §EC.2.6.

Throughout the proofs, we adopt the following mathematical conventions: For any function g(.),∑−1
t=0 g(t)

.
= 0, and

∏m

k=j g(k)
.
= 1 if j >m. In addition, we denote expectations of random variables as follows:

E[g(x̃)] .=
∑

ξ≥0 g(x+ ξ)P[ξ] for any function g(.).
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EC.2.1. Preliminaries

Proposition 1 establishes that the FB policy is a threshold policy.

Proof of Proposition 1. The proof is similar to Example 1.2.1 in Bertsekas (2001). Applying the value

iteration algorithm (Bertsekas 2001, Proposition 1.2.1) shows that V FB(x) is nonincreasing in x given that

the per-period reward function
∑n

i=1 fi(xi) is nonincreasing in x and that the transition probabilities P[ξ]

are stationary. Consider any state y such that AFB(y) =C. By (7),
∑n

i=1 fi(yi)+δE[V FB(y+ξ)]≤ δV FB(0).

Hence for any state z ≥ y, because fi(zi) ≤ fi(yi) and V FB(z) ≤ V FB(y), we obtain that
∑n

i=1 fi(zi) +

δE[V FB(z+ξ)]≤ δV FB(0), i.e., AFB(z) =C. That is, problem (7)-(8) is an optimal stopping problem. Define

x as one of the largest (componentwise) states in which it is optimal to produce; i.e., for all i, if worker i has

one more issue then it becomes optimal to coordinate. Accordingly, by (8), V FB(x+ ξ) = δV FB(0) for any

ξ≥ 0 such that ξ ̸= 0. Hence, by (7)-(8),
∑n

i=1 fi(xi)> δV FB(0)(1− δ)
.
= ϕ.

We next show that ϕ<
∑n

i=1 fi(0). If we had that AFB(0) =C, we would then have V FB(0) = δV FB(0), a

contradiction since δ < 1 and
∑

i fi(0)> 0. We finally show that ϕ≥ 0. If we had that AFB(x) = P , we would

then have, by (7), δV FB(0)< 0+ δE[V FB(x+ ξ)], a contradiction since V FB(x) is nonincreasing. □

The next two lemmas show that each worker’s dynamic program to state their preferred outcome (5)

simplies under Assumption 1(ii) to (9). First, Lemma EC.1 shows that worker i prefers to coordinate when

she have more than xi issues.

Lemma EC.1. For any x such that xi ≥ xi, a
π
i (x, t) =C, for any t.

Proof. Fix t and x such that xi ≥ xi. Consider any sample path of transitions σ = (ξσ
1 ,ξ

σ
2 , . . .). Let

θπσ(x, t) ≥ 1 the number of periods of production under coordination scheduling rule π on σ if production

takes place in (x, t) until coordination happens (if it ever happens). That is, for any 1≤ τ < θπσ(x, t), A
π(x+∑τ

s=1 ξ
σ
s , t+ τ) = P and Aπ(x+

∑θπσ (x,t)
s=1 ξσ

s , t+ θπσ(x, t)) =C. Since f(xi + ξi) = 0 for all ξi ≥ 0 since xi ≥ xi

and since transitions happen only upwards, worker i’s value-to-go in state (x, t) if the outcome were to

produce would be equal to 0+ δθ
π
σ (x,t)+1V π

i (0,0)≤ δ2V π
i (0,0)≤ δV π

i (0,0). Hence, by (5), aπ
i (x, t) =C. □

Second, Lemma EC.2 shows that, if worker i’s productivity drops to 0 if she has an issue (Assumption

1(ii)), she prefers to produce when she has no issue.

Lemma EC.2. Under Assumption 1(ii), for any x such that xi = 0, aπ
i (x, t) = P .

Proof. The proof is by policy iteration. Suppose that, in any future time period, aπ
j (x, t) = P ⇔ xj = 0

for all (x, t) and for all j = 1, . . . , n. We show that the same applies in the current period. Specifically, fixing

a state (x, t) such that xi = 0, we show that, on each sample path, worker i’s value-to-go obtained from

producing in (x, t) is higher than her value-to-go obtained from coordinating in (x, t), i.e., δV π
i (0,0).

Fix any T and suppose coordination must happen by time T + 1. Since T is chosen arbitrarily, this is

without loss of generality. Consider any sample path of transitions σ= (ξσ
1 ,ξ

σ
2 , . . . ,ξ

σ
T−1), which happens with

probability Pσ
.
=
∏T−1

s=1 P[ξσ
s ]. Let UT be the set of all possible sample paths. If production were to take place

in (x, t), let 1≤ θπσ(x, t)≤ T be the number of periods of production under π on σ until coordination happens.

That is, for any 1 ≤ τ < θπσ(x, t), A
π(x +

∑τ

s=1 ξ
σ
s , t + τ) = P and Aπ(x +

∑θπσ (x,t)
s=1 ξσ

s , t + θπσ(x, t))) = C.



ec6 e-companion to : Scheduling Rules for Team Coordination

Accordingly, worker i’s value-to-go from (x, t) on sample path σ equals
∑θπσ (x,t)−1

τ=0 δτfi
(
xi +

∑τ

s=1 ξ
σ
s,i

)
+

δθ
π
σ (x,t)+1V π

i (0,0) in which ξσs,i is the ith component of vector ξσ
s .

Consider now state (0,0). By assumption, coordination is always followed by production, so Aπ(a,0) =

P for any a. Therefore, worker i’s value-to-go from (0,0) on sample path σ can be similarly defined as∑θπσ (0,0)−1
τ=0 δτfi

(∑τ

s=1 ξ
σ
s,i

)
+ δθ

π
σ (0,0)+1V π

i (0,0), with 1≤ θπσ(0,0)≤ T .

Since, in the future, aπ
j (x, t) = P ⇔ xj = 0 for all (x, t) and for all j = 1, . . . , n, aπ

j (x, t) is thus independent

of t, for all j = 1, . . . , n. Therefore, under the monotonicity assumptions that for any a, Aπ(a, t) = C ⇒
Aπ(a′, t′) =C for all a′ such that for all i, ai =C⇒ a′

i =C, and for all t′ ≥ t, the rule in the future is such

that Aπ(aπ(x, t), t) =C⇒Aπ(aπ(x′, t′), t′) =C for all t′ ≥ t and x′ ≥ x. As a result, θπσ(x, t)≤ θπσ(0,0), i.e.,

coordination occurs sooner when starting from (x, t) than from (0,0).

Let χσ,i
.
=min{s≤ T +1|ξσs,i ≥ 1} be the first time on the sample path σ that worker i encounters an issue

if she encounters one, or T +1 otherwise. That is, the ith component of x+
∑τ

s=0 ξ
σ
s is equal to zero for all

τ < χσ,i and greater than or equal to one afterwards. We distinguish two types of sample paths: let Sπ(x, t)
.
=

{σ|χσ,i < θπσ(x, t)} and T π(x, t)
.
= {σ|χσ,i ≥ θπσ(x, t)}. That is, on sample paths σ ∈ T π(x, t), starting from

(x, t), worker i earns vi until coordination takes place, unlike on sample paths σ ∈ Sπ(x, t), on which worker

i earns zero for some periods before coordination takes place. Obviously, Sπ(x, t)∪T π(x, t) = UT .

For any σ ∈ Sπ(x, t),
∑θπσ (x,t)−1

τ=0 δτfi
(
xi +

∑τ

s=1 ξ
σ
s,i

)
=
∑χσ,i−1

τ=0 δτvi =
∑θπσ (0,0)−1

τ=0 δτfi
(
0+

∑τ

s=1 ξ
σ
s,i

)
. The

second equality follows because θπσ(x, t) ≤ θπσ(0,0); hence, if worker i earns v for χσ,i on sample path σ

starting from (x, t), the same will happen starting from (0,0). Consequently, for any σ ∈ Sπ(x, t), worker i’s

value-to-go on sample path σ if production happens in state (x, t) is greater than or equal to her value-to-go

on the same sample path, but starting from state (0,0), i.e.,θπσ (x,t)−1∑
τ=0

δτfi

(
xi +

τ∑
s=1

ξσs,i

)
+ δθ

π
σ (x,t)+1V π

i (0,0)

≥
θπσ (0,0)−1∑

τ=0

δτfi

(
τ∑

s=1

ξσs,i

)
+ δθ

π
σ (0,0)+1V π

i (0,0)

 .

Since δ < 1, V π
i (0,0)> 0, fi(0)> 0, and θπσ(0,0)≥ 1, the above inequality is strict:θπσ (x,t)−1∑

τ=0

δτfi

(
xi +

τ∑
s=1

ξσs,i

)
+ δθ

π
σ (x,t)+1V π

i (0,0)

> δ

θπσ (0,0)−1∑
τ=0

δτfi

(
τ∑

s=1

ξσs,i

)
+ δθ

π
σ (0,0)+1V π

i (0,0)


∀σ ∈ Sπ(x, t). (EC.1)

Consider next any sample path σ ∈ T π(x, t). Simplifying

V π
i (0,0) =

∑
σ′∈UT

Pσ′

min{χσ′ ,θπσ′ (0,0)}−1∑
τ=0

δτvi + δθ
π
σ′ (0,0)+1V π

i (0,0)


yields

V π
i (0,0) =

∑
σ′∈UT

Pσ′

(∑min{χσ′ ,θπσ′ (0,0)}−1

τ=0 δτvi

)
1−

∑
σ′∈UT

Pσ′δθ
π
σ′ (0,0)+1

.

From this we obtain:θπσ (x,t)−1∑
τ=0

δτfi

(
xi +

τ∑
s=1

ξσs,i

)
+ δθ

π
σ (x,t)+1V π

i (0,0)

− δ

θπσ (0,0)−1∑
τ=0

δτfi

(
τ∑

s=1

ξσs,i

)
+ δθ

π
σ (0,0)+1V π

i (0,0)
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=

θπσ (x,t)−1∑
τ=0

δτvi + δθ
π
σ (x,t)+1V π

i (0,0)

− δ

min{χσ,i,θ
π
σ (0,0)}−1∑

τ=0

δτvi + δθ
π
σ (0,0)+1V π

i (0,0)


=

vi
1− δ

(
1− δθ

π
σ (x,t)− δ+ δmin{χσ,i,θ

π
σ (0,0)}+1

)
+
(
δθ

π
σ (x,t)+1− δθ

π
σ (0,0)+2

)
V π
i (0,0)

=
vi

1− δ

(
1− δθ

π
σ (x,t)− δ+ δmin{χσ,i,θ

π
σ (0,0)}+1

)
+
(
δθ

π
σ (x,t)+1− δθ

π
σ (0,0)+2

) vi
1− δ

1−
∑

σ′∈UT
Pσ′δmin{χσ′ ,θπσ′ (0,0)}

1−
∑

σ′∈UT
Pσ′δθ

π
σ′ (0,0)+1

=
vi

(1− δ)
(
1−

∑
σ′∈UT

Pσ′δθ
π
σ′ (0,0)+1

) ×F,

in which

F
.
=
(
1− δθ

π
σ (x,t)− δ+ δmin{χσ,i,θ

π
σ (0,0)}+1

)(
1−

∑
σ′∈UT

Pσ′δθ
π
σ′ (0,0)+1

)

+
(
δθ

π
σ (x,t)+1− δθ

π
σ (0,0)+2

)1−
∑

σ′∈Sπ(x,t)∪T π(x,t)

Pσ′δmin{χσ′ ,θπσ′ (0,0)}

 .

The rest of the proof consists in showing that F > 0 across all problem instances. For any σ′ ̸= σ, F is

nondecreasing in χσ′ . Hence, a lower bound on F is obtained by replacing χσ′ by its lower bound, namely, 1 if

σ′ ∈ Sπ(x, t) and θπσ′(x, t) if σ′ ∈ T π(x, t). Since, when σ′ ∈ T π(x, t), the term θπσ′(x, t) does not appear in F ,

this can be further tightened by replacing it with its lower bound, equal to 1. In contrast, F is nonincreasing

in χσ since the derivative of F with respect to δmin{χσ,i,θ
π
σ (0,0)} equals δ(1−

∑
σ′ ̸=σ

Pσ′δθ
π
σ′ (0,0)+1−Pσδ

θπσ (x,t)),

which is nonnegative. Hence, a lower bound on F is obtained by replacing χσ,i with its upper bound, i.e., T .

Since T was chosen arbitrarily, a looser upper bound consists in taking the limit when χσ,i→∞. Implementing

these two changes, we obtain

F ≥ F ′ .
=
(
1− δθ

π
σ (x,t)− δ+ δθ

π
σ (0,0)+1

)(
1−

∑
σ′∈UT

Pσ′δθ
π
σ′ (0,0)+1

)

+
(
δθ

π
σ (x,t)+1− δθ

π
σ (0,0)+2

)1−
∑

σ′∈UT \{σ}

Pσ′δ−Pσδ
θπσ (0,0)

 .

We consider two cases. First, if 1− δθ
π
σ (x,t) − δ + δθ

π
σ (0,0)+1 > 0, then F ′ > 0. Second, suppose that 1−

δθ
π
σ (x,t) − δ+ δθ

π
σ (0,0)+1 ≤ 0. Under this assumption, F ′ is nondecreasing in δθ

π
σ′ (0,0) for any σ′ ̸= σ. Hence a

lower bound on F ′ is achieved by replacing δθ
π
σ′ (0,0) by its lower bound, namely 0, for any σ′ ̸= σ. Accordingly,

F ′ ≥ F ′′ .
=
(
1− δθ

π
σ (x,t)− δ+ δθ

π
σ (0,0)+1

) (
1−Pσδ

θπσ (0,0)+1
)

+
(
δθ

π
σ (x,t)+1− δθ

π
σ (0,0)+2

) (
1− (1−Pσ)δ−Pσδ

θπσ (0,0)
)
.

Since F ′′ is nonincreasing in Pσ given that θπσ(x, t)≤ θπσ(0,0), a lower bound on F ′′ is achieved by replacing

Pσ with its upper bound, i.e., 1, yielding:

F ′′ ≥ F ′′′ .
=
(
1− δθ

π
σ (x,t)− δ+ δθ

π
σ (0,0)+1

) (
1− δθ

π
σ (0,0)+1

)
+
(
δθ

π
σ (x,t)+1− δθ

π
σ (0,0)+2

) (
1− δθ

π
σ (0,0)

)
.

Since F ′′′ is nonincreasing in δθ
π
σ (x,t), a lower bound on F ′′′ is achieved by replacing δθ

π
σ (x,t) with its upper

bound, i.e., δθ
π
σ (0,0), yielding:

F ′′′ ≥ (1− δθ
π
σ (0,0))(1− δ)> 0.



ec8 e-companion to : Scheduling Rules for Team Coordination

Combining these inequalities, we obtain:θπσ (x,t)−1∑
τ=0

δτfi

(
xi +

τ∑
s=1

ξσs,i

)
+ δθ

π
σ (x,t)+1V π

i (0,0)

> δ

θπσ (0,0)−1∑
τ=0

δτfi

(
τ∑

s=1

ξσs,i

)
+ δθ

π
σ (0,0)+1V π

i (0,0)


∀σ ∈ T π(x, t). (EC.2)

Combining (EC.1) and (EC.2), we obtain that

V π
i (x, t|aπ(x, t) = P ) =

∑
σ

θπσ (x,t)−1∑
τ=0

δτfi

(
xi +

τ∑
s=1

ξσs,i

)
+ δθ

π
σ (x,t)+1V π

i (0,0)


> δ

∑
σ

θπσ (0,0)−1∑
τ=0

δτfi

(
τ∑

s=1

ξσs,i

)
+ δθ

π
σ (0,0)+1V π

i (0,0)


= δV π

i (0,0)

Hence, aπ
i (x, t) = P . □

EC.2.2. Teams of Two Workers

Proposition 2 characterizes the FB policy for teams of two workers, using the generic characterization of the

FB policy (Proposition 1).

Proof of Proposition 2. By Proposition 1, AFB(x) = P if and only if
∑2

i=1 fi(xi) > ϕ, for some ϕ and

V FB(0) = ϕ/(δ(1− δ)). Under Assumption 1,
∑2

i=1 fi(xi) ∈ {0, v2, v1, v1 + v2}. Because ϕ ∈ [0, v1 + v2) and

because v1 ≥ v2, ϕ∈ [0, v2)∪ [v2, v1)∪ [v1, v1+v2). We first evaluate V FB(0) for each of these three cases and

then compare these three values to obtain optimality conditions in each case. To simplify the notation, we

henceforth omit the superscript ‘FB’. We also denote by V FB(x|A) the value function in state x when action

A∈ {C,P} is taken in the current period and the FB policy is followed subsequently.

• If ϕ∈ [v1, v1 + v2), A(x) = P if and only if x= 0. Accordingly,

V (0) = v1 + v2 + δ(1− p1)(1− p2)V (0)+ δp1(1− p2)V ((1,0)|C)

+δ(1− p1)p2V ((0,1)|C)+ δp1p2V ((1,1)|C),which reduces to

V (0) (1− δ(1− p1)(1− p2)) = v1 + v2 + δ (1− (1− p1)(1− p2)) δV (0)

⇔ V (0)(1− δ) (1+ δ− δ(1− p1)(1− p2)) = v1 + v2

⇔ V (0)(1− δ) =
v1 + v2

1+ δ− δ(1− p1)(1− p2)
. (EC.3)

• If ϕ∈ [v2, v1), A(x) = P if and only if x1 = 0. Accordingly,

V (0) = v1 + v2 + δ(1− p1)(1− p2)V (0)+ δp1(1− p2)V ((1,0)|C)

+δ(1− p1)p2V ((0,1)|P )+ δp1p2V ((1,1)|C),which reduces to

V (0) (1− δ(1− p1)(1− p2)) = v1 + v2 + δp2(1− p1)

(
v1 + δp1δV (0)

1− δ(1− p1)

)
+ δp1δV (0)

⇔ V (0)(1− δ) (1− δ(1− p1)(1− p2))
1+ δp1

1− δ(1− p1)
=

1− δ(1− p1)(1− p2)

1− δ(1− p1)
v1 + v2

⇔ V (0)(1− δ) =
v1

1+ δp1
+

v2(1− δ(1− p1))

(1+ δp1)(1− δ(1− p1)(1− p2))
. (EC.4)
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• If ϕ∈ [0, v2), A(x) = P if and only if x1 = 0 or x2 = 0. Accordingly,

V (0) = v1 + v2 + δ(1− p1)(1− p2)V (0)+ δp1(1− p2)V ((1,0)|P )

+δ(1− p1)p2V ((0,1)|P )+ δp1p2V ((1,1)|C),which reduces to

V (0) (1− δ(1− p1)(1− p2))

= v1 + v2 + δp2(1− p1)

(
v1 + δp1δV (0)

1− δ(1− p1)

)
+ δp1(1− p2)

(
v2 + δp2δV (0)

1− δ(1− p2)

)
+ δp1p2δV (0)

⇔ V (0)(1− δ)
δ2(p21 + p22 + p1p2(1− δp1p2))+ δ(1− δ)(2− δp1p2)(p1 + p2)+ (1− δ)2(1− δp1p2)

(1− δ(1− p1))(1− δ(1− p2))

= (1− δ(1− p1)(1− p2))

(
v1

1− δ(1− p1)
+

v2
1− δ(1− p2)

)
⇔ V (0)(1− δ) =

(v1(1− δ(1− p2))+ v2(1− δ(1− p1))) (1− δ(1− p1)(1− p2))

δ2(p21 + p22 + p1p2(1− δp1p2))+ δ(1− δ)(2− δp1p2)(p1 + p2)+ (1− δ)2(1− δp1p2)
.

(EC.5)

The rest of the proof consists in comparing these three value functions. Comparing (EC.3) to (EC.4), we

obtain

v1 + v2
1+ δ− δ(1− p1)(1− p2)

≥ v1
1+ δp1

+
v2(1− δ(1− p1))

(1+ δp1)(1− δ(1− p1)(1− p2))

⇔ v1
v2
≤ δ

1− δ(1− p1)(1− p2)
.

Comparing (EC.4) to (EC.5), we obtain

v1
1+ δp1

+
v2(1− δ(1− p1))

(1+ δp1)(1− δ(1− p1)(1− p2))

≥ (v1(1− δ(1− p2))+ v2(1− δ(1− p1))) (1− δ(1− p1)(1− p2))

δ2(p21 + p22 + p1p2(1− δp1p2))+ δ(1− δ)(2− δp1p2)(p1 + p2)+ (1− δ)2(1− δp1p2)

⇔ v1
v2
≥ (1− δ(1− p1))(1− δ(1− p1)(1− p2))+ p2δ

2(1− p1)

δ (1− δ(1− p1)(1− p2))
.

Finally, comparing (EC.3) to (EC.5), we obtain

v1 + v2
1+ δ− δ(1− p1)(1− p2)

≥ (v1(1− δ(1− p2))+ v2(1− δ(1− p1))) (1− δ(1− p1)(1− p2))

δ2(p21 + p22 + p1p2(1− δp1p2))+ δ(1− δ)(2− δp1p2)(p1 + p2)+ (1− δ)2(1− δp1p2)

⇔ g(p1, p2, δ)v1 + g(p2, p1, δ)v2 ≥ 0,

in which

g(p1, p2, δ)
.
=−p2(1− p1)+ δ(1− p2)(p1 +(2− p1)(1− p1)p2)− δ2(1− p1)(1− p2)(p1 + p2(1− p2)(1− p1)).

Define γ(p1, p2, δ)
.
=−g(p2, p1, δ)/g(p1, p2, δ). Hence, the FB policy can be characterized as follows: When

g(p1, p2, δ)>(<) 0,

• If v1
v2
≤ α(p1, p2, δ) and

v1
v2
≥(≤) γ(p1, p2, δ), Produce in (0,0), Coordinate otherwise;

• If v1
v2
≥ α(p1, p2, δ) and

v1
v2
≥ β(p1, p2, δ), Produce in (0,0) and (0, x2), ∀x2 ≥ 1, Coordinate otherwise;

• If v1
v2
≤ β(p1, p2, δ) and v1

v2
≤(≥) γ(p1, p2, δ), Produce in (0,0), (0, x2), ∀x2 ≥ 1, and (x1,0), ∀x1 ≥ 1,

Coordinate otherwise.
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The conditions that involve γ(p1, p2, δ) turn out to be redundant. To see this, note that α(p1, p2, δ)≥ 1 if

and only if β(p1, p2, δ)≤ 1. Hence if v1/v2 ≤ α(p1, p2, δ), then α(p1, p2, δ)≥ 1 since v1 ≥ v2, which implies that

β(p1, p2, δ)≤ 1, and therefore that v1/v2 ≥ β(p1, p2, δ). Conversely if v1/v2 ≤ β(p1, p2, δ), then β(p1, p2, δ)≥ 1

since v1 ≥ v2, which implies that α(p1, p2, δ) ≤ 1, and therefore v1/v2 ≥ α(p1, p2, δ). As a result, the three

cases can be completely described in terms of the conditions on α(p1, p2, δ) and β(p1, p2, δ). □

Proposition 3 characterizes the robustness of PC, PP, and HSj , by deriving a worst-case bound on their

optimality gap.

Proof of Proposition 3. The proof uses the expressions for the value functions derived in the proof

of Proposition 2 corresponding to PC if ϕ ∈ [v1, v1 + v2), namely, (EC.3), HS1 if ϕ ∈ [v2, v1), namely,

(EC.4), and PP if ϕ ∈ [0, v2), namely, (EC.5). For each pair of coordination scheduling rules π1, π2 ∈

{PC,HS1,HS2,PP} with π1 ̸= π2, we characterize a lower and an upper bound on the ratio V π1/V π2 by

considering a worst-case extreme problem instance. Since V FB = max{V PC, V HS1 , V HS2 , V PP} by Propo-

sition 1, for any π1 ∈ {PC,HS1,HS2,PP}, an attainable worst-case bound on V π1/V FB is defined as

minπ2∈{PC,HS1,HS2,PP} V
π1/V π2 .

First consider the ratio V HS1/V PC:

V HS1

V PC
=

v1
v1 + v2

1+ δ(1− (1− p1)(1− p2))

1+ δp1
+

v2
v1 + v2

(1− δ(1− p1)) (1+ δ(1− (1− p1)(1− p2)))

(1+ δp1)(1− δ(1− p1)(1− p2))
.

The function is increasing in v1/v2. Hence,

V HS1

V PC
≤ 1+ δ(1− (1− p1)(1− p2))

1+ δp1
≤ 1+ δ

1+ δp1
≤ 1+ δ;

here, the first inequality is because the left-hand side is maximized when v1/v2→∞, and the second and

third inequalities follow by taking p2 = 1 and p1 = 0, respectively.

Similarly,

V HS1

V PC
≥ (1− δ(1− p1)) (1+ δ(1− (1− p1)(1− p2)))

(1+ δp1)(1− δ(1− p1)(1− p2))
≥ (1− δ(1− p1)) (1+ δ)

1+ δp1
≥ 1− δ2;

here, the first inequality is because the left-hand side is minimized when v1/v2→ 0, and the second and third

inequalities follow by taking p2 = 1 and p1 = 0, respectively.

Consider next the ratio V PP/V PC:

V PP

V PC
=

(
v1

v1 + v2

1

1− δ(1− p1)
+

v2
v1 + v2

1

1− δ(1− p2)

)
× (1− δ) (1+ δ(1− (1− p1)(1− p2)))

1−
∑∞

t=0 δ
t+2 (p1(1− p1)t(1− (1− p2)t+1)+ p2(1− p2)t(1− (1− p1)t))

. (EC.6)

Without loss of generality, suppose that p2 < p1. Then, the right-hand side is decreasing in v1/v2. Therefore,

an upper bound is attained when v1 = 0; that is,

V PP

V PC
≤ 1

1− δ(1− p2)
· (1− δ) (1+ δ(1− (1− p1)(1− p2)))

1−
∑∞

t=0 δ
t+2 (p1(1− p1)t(1− (1− p2)t+1)+ p2(1− p2)t(1− (1− p1)t))

.

The right-hand side is decreasing in p2 if and only if the following function,

− (1− δ(1− p1))
(
δ(1− δ)+ p1(1− δ)2 + δp21(2− δ− δ2)+ δ2p31(1+ δ)

)
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− 2δ(1− δ(1− p1))(1− p1)(δ+ p1 + δp21(1+ δ))p2

− δ2(1− p1)
2(δ+ p1(1+ δ)+ p21δ(1+ δ))p22,

is negative, which always holds. Thus, an upper bound is attained when p2 = 0, i.e.,

V PP

V PC
≤ 1+ δp1 ≤ 1+ δ.

Using a symmetric argument, suppose that p2 > p1. Then, the right-hand side (EC.6) is increasing in

v1/v2. Substituting v1 = 0 into the the right-hand side of (EC.6), we obtain that it is decreasing in p2, similar

to the argument above; hence, a lower bound on V PP/V PC is attained when p2 = 1:

V PP

V PC
≥ (1− δ) (1+ δ)

1−
∑∞

t=0 δ
t+2p1(1− p1)t

≥ 1− δ2.

Here, the last inequality is achieved by taking p1 = 0.

Third, consider the ratio V HS1/V PP:

V HS1

V PP
=

 v1
v1

1−δ(1−p1)
+ v2

1−δ(1−p2)

+
v2(1− δ(1− p1))(

v1
1−δ(1−p1)

+ v2
1−δ(1−p2)

)
(1− δ(1− p1)(1− p2))


× 1

(1− δ)(1+ δp1)

(
1−

∞∑
t=0

δt+2
(
p1(1− p1)

t(1− (1− p2)
t+1)+ p2(1− p2)

t(1− (1− p1)
t)
))

.

The right-hand side is increasing in v1. Hence, its upper bound is attained when v1/v2→∞; that is,

V HS1

V PP
≤ (1− δ(1− p1))

(1+ δp1)(1− δ)

(
1−

∞∑
t=0

δt+2
(
p1(1− p1)

t(1− (1− p2)
t+1)+ p2(1− p2)

t(1− (1− p1)
t)
))

.

Because the right-hand side is decreasing in p2, an upper bound on V HS1/V PP is achieved when p2 = 0, i.e.,

V HS1

V PP
≤ 1− δ(1− p1)

(1+ δp1)(1− δ)
≤ 1

1− δ2
.

Conversely, a lower bound on V HS1/V PP is attained when v1 = 0; hence,

V HS1

V PP
≥ (1− δ(1− p1))(1− δ(1− p2))

(1− δ(1− p1)(1− p2))

× 1

(1+ δp1)(1− δ)

(
1−

∞∑
t=0

δt+2
(
p1(1− p1)

t(1− (1− p2)
t+1)+ p2(1− p2)

t(1− (1− p1)
t)
))

.

The right-hand side is increasing in p2 if and only if the following function,

G(p1, p2, δ)
.
= 1− δ(1− p1)(2− δ2 + p1δ(1+ δ))+ δp2(1− p1)(1+ δ(1− δ)+ δp1(1+ δ)),

is positive. Since G(p1, p2, δ) is linear increasing in p2 and since G(p1,1, δ) ≥ 0, G(p1, p2, δ) will either be

always positive or will cross zero once depending on its value at p2 = 0. We thus need to consider two cases:

1. If G(p1,0, δ)≥ 0, then G(p1, p2, δ) is nonnegative for all p2, and a lower bound on V HS1/V PP is attained

when p2 = 0, i.e.,
V HS1

V PP
≥ 1

1+ δp1
≥ 1

1+ δ
.
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2. If G(p1,0, δ) < 0, then G(p1, p2, δ) crosses zero once as p2 increases and the crossing is from below.

Hence, a lower bound on V HS1/V PP is attained when G(p1, p2, δ) = 0, i.e., when p2 =−(1−δ(1−p1)(2−

δ2 + p1δ(1+ δ)))/(δ(1− p1)(1+ δ(1− δ)+ δp1(1+ δ))). Accordingly,

V HS1

V PP
≥ 4(1− δ)δ+(−1− 2δ+9δ2− 2δ3− δ4)p1− 2(1− δ)δ(1+3δ+ δ2)p21− δ2(1+ δ)2p31

4δ(1− δ(1− p1))(1− p1)(1+ δp1)
.

The derivative of the right-hand side with respect to p1 is negative if and only if the following function,

(1− δ)(1− δ(1− δ))+ 3(1− δ)2δp1 +4(1− δ)δ2p21 +2δ3p31

is positive, which is always the case. Hence, a lower bound on V HS1/V PP in this case is attained when

p1 is as large as possible while G(p1,0, δ)< 0, i.e., while p1 < (−1+ δ+ δ2)/(δ(1+ δ)). As a result, it is

optimal in this case to take p1 such that G(p1,0, δ)→ 0, and this case is dominated by the former one.

Finally, consider the ratio V HS1/V HS2 :

V HS1

V HS2
=

v1(1− δ(1− p1)(1− p2))+ v2(1− δ(1− p1))

v2(1− δ(1− p1)(1− p2))+ v1(1− δ(1− p2))
· 1+ δp2
1+ δp1

.

Because the right-hand side is increasing in v1, a lower bound is attained when v1 = 0, i.e.,

V HS1

V HS2
≥ 1− δ(1− p1)

1− δ(1− p1)(1− p2)
· 1+ δp2
1+ δp1

.

The right-hand side is increasing in p2. Hence, a lower bound is attained when p2 = 0, i.e.,

V HS1

V HS2
≥ 1

1+ δp1
≥ 1

1+ δ
.

Given the symmetry between V HS1 and V HS2 , the upper bound is derived similarly.

To summarize:

1− δ2 ≤ V HS1

V PC ≤ 1+ δ, 1− δ2 ≤ V PP

V PC ≤ 1+ δ,
1

1+δ
≤ V HS1

V PP ≤ 1
1−δ2

, 1
1+δ
≤ V HS1

V HS2
≤ 1+ δ.

By Proposition 2, V FB =max{V PC, V PP, V HS1 , V HS2}. Accordingly,

V FB ≤ max{1,1+ δ,1+ δ,1+ δ}V PC = (1+ δ)V PC

V FB ≤ max

{
1

1− δ2
,1,

1

1− δ2
,

1

1− δ2

}
V PP =

1

1− δ2
V PP

V FB ≤ max

{
1

1− δ2
,1+ δ,1,1+ δ

}
V HSi =max

{
1

1− δ2
,1+ δ

}
V HSi ∀i∈ {1,2},

completing the proof. □

EC.2.3. Large Teams

Lemma EC.3 derives closed-form expressions for the value functions associated with the worker-driven coor-

dination scheduling rules enhanced with time-based controls. As a corollary to this lemma, Lemma EC.4

will then derive closed-form expressions for the value functions associated with the basic worker-driven

coordination scheduling rules, by taking Tmin = 2 and Tmax→∞.

Lemma EC.3. Suppose that Assumption 1 holds.
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• Under PC-Cmin with a minimum cycle duration of Tmin ≥ 2 periods,

V PC-Cmin

i =

vi

(
1−(δ(1−pi))

Tmin−1

1−δ(1−pi)
+

(
∏n

j=1(1−pj))
Tmin−1

δT
min−1

1−δ
∏n

j=1(1−pj)

)

1−
(∏n

j=1(1− pj)
)Tmin−1

δTmin+1
1−
∏n

j=1(1−pj)

1−δ
∏n

j=1(1−pj)
−
(
1−

(∏n

j=1(1− pj)
)Tmin−1

)
δTmin

.

• Under PP-Cmax with a maximum cycle duration of Tmax ≥ 2 periods,

V PP-Cmax

i

=
vi

1−(δ(1−pi))
Tmax−1

1−δ(1−pi)

1−
∑Tmax−3

t=0 (δt+2− δTmax)
(∑n

j=1 pj(1− pj)t
(∏j−1

k=1 (1− (1− pk)t)
)
·
(∏n

k=j+1 (1− (1− pk)t+1)
))
− δTmax

.

• Under HS-Cmin with a minimum cycle duration of Tmin ≥ 2 periods,

V HS-Cmin

i =


v1

(
1−(δ(1−p1))T

min−1

1−δ(1−p1)
+

(1−p1)T
min−1δT

min−1

1−δ(1−p1)

)
1−(1−p1)

Tmin−1δT
min+1 p1

1−δ(1−p1)
−(1−(1−p1)

Tmin−1)δTmin if i= 1

vi

(
1−(δ(1−pi))

Tmin−1

1−δ(1−pi)
+

(1−p1)T
min−1(1−pi)

Tmin−1δT
min−1

1−δ(1−p1)(1−pi)

)
1−(1−p1)

Tmin−1δT
min+1 p1

1−δ(1−p1)
−(1−(1−p1)

Tmin−1)δTmin if i ̸= 1.

• Under HS-Cmax with a maximum cycle duration of Tmax ≥ 2 periods,

V HS-Cmax

i =

v1
(1−p1)(1−(δ(1−p1))

Tmax−1)
(1−δ)((1−p1)(1+δp1)−δT

max (1−p1)T
max)

if i= 1

vi
(1−p1)(1−δ(1−p1))(1−(δ(1−p1)(1−pi))

Tmax−1)
(1−δ)((1−p1)(1+δp1)−δT

max (1−p1)T
max )(1−δ(1−p1)(1−pi))

if i ̸= 1.

Proof. The proof is structured in four parts, separately characterizing the value function for PC-Cmin,

PP-Cmax, HS-Cmin, and HS-Cmax.

First, consider PC-Cmin with a minimum cycle duration of Tmin ≥ 2 periods. By (9) and (11),

APC-Cmin

(aPC-Cmin

(x, t), t) =C for all x ̸= 0 and t≥ Tmin−1, and APC-Cmin

(aPC-Cmin

(x, t), t) = P otherwise.

We henceforth ignore the superscripts for simplicity. Accordingly in the first Tmin − 1 periods of the cycle,

worker i earns an expected value equal to vi
∑Tmin−2

t=0 (δ(1− pi))
t. For the continuation value, we consider

two scenarios.

• First, suppose that a worker encounters an issue during the first Tmin− 1 periods, which happens with

probability 1−
(∏n

j=1(1− pj)
)Tmin−1

. In that case, coordination happens in period Tmin, giving worker

i a discounted value of δT
min

Vi(0,0).

• Second, suppose that no worker has an issue during the first Tmin − 1 periods, which hap-

pens with probability
(∏n

j=1(1− pj)
)Tmin−1

. In that case, production continues until an issue

arises. In each period of production after period Tmin − 1, coordination happens with prob-

ability 1 −
∏n

j=1(1 − pj) and production continues with probability
∏n

j=1(1 − pj). Hence in

that scenario, worker i’s discounted expected value, from period Tmin − 1 onwards, is equal to

δT
min−1

(
vi +

(
1−

∏n

j=1(1− pj)
)
δ2Vi(0,0)

)
/
(
1− δ

∏n

j=1(1− pj)
)
.

Combining both scenarios, we obtain

Vi(0,0) =vi

Tmin−2∑
t=0

(δ(1− pi))
t +

1−

(
n∏

j=1

(1− pj)

)Tmin−1
 δT

min

Vi(0,0)
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+

(
n∏

j=1

(1− pj)

)Tmin−1

δT
min−1

vi +
(
1−

∏n

j=1(1− pj)
)
δ2Vi(0,0)

1− δ
∏n

j=1(1− pj)
.

Rearranging the terms gives the desired result.

Second, consider PP-Cmax with a maximum cycle duration of Tmax ≥ 2 periods. By (9) and

(12), APP-Cmax

(aPP-Cmax

(x, t), t) = C for all x ≥ 1 if t < Tmax − 1 and all x if t ≥ Tmax − 1, and

APP-Cmax

(aPP-Cmax

(x, t), t) = P otherwise. We henceforth ignore the superscripts for simplicity. Starting from

state (0,0), worker i earns vi each period until she faces an issue or until Tmax − 1 periods have elapsed,

whichever comes first. Hence, worker i earns vi
∑Tmax−2

t=0 δt(1−pi)
t = vi(1− (δ(1−pi))

Tmax−1)/(1− δ(1−pi))

within a cycle. For the continuation value, we consider two scenarios

• First, suppose that all workers have encountered an issue by the end of period t, for any t≤ Tmax− 3,

so that the cycle duration (t+1 periods of production and one period of coordination) is strictly less

than Tmax periods. Coordination happens after one period if all workers have an issue at the end of

the first period, which happens under Assumption 1 with probability
∏n

j=1 pj ; after two periods if at

least one worker does not have an issue in the first period but all workers have an issue at the end of

the second period; etc. More generally, coordination happens after t+1 periods with probability
n∑

j=1

pj(1− pj)
t

(
j−1∏
k=1

(
t−1∑
s=0

pk(1− pk)
s

))
·

(
n∏

k=j+1

(
t∑

s=0

pk(1− pk)
s

))

=

n∑
j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
))

,

and the continuation value associated with that event is δt+2Vi(0,0).

• Second, suppose that not all workers have faced an issue by the end of period Tmax−3, which happens

with probability

1−
Tmax−3∑

t=0

n∑
j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
))

.

In that case, coordination must happen in period Tmax−1, and the continuation value associated with

that scenario is δT
max

Vi(0,0).

Combining both scenarios, we obtain:

Vi(0,0) =vi
1− (δ(1− pi))

Tmax−1

1− δ(1− pi)

+

Tmax−3∑
t=0

δt+2

(
n∑

j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
)))

Vi(0,0)

+ δT
max

(
1−

Tmax−3∑
t=0

n∑
j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
)))

Vi(0,0).

Rearranging the terms gives the desired result.

Third, consider HS-Cmin with a minimum cycle duration of Tmin ≥ 2 periods. By (9) and (13),

AHS-Cmin

(aHS-Cmin

(x, t), t) =C for all x such that x1 > 0 and t≥ Tmin−1 and AHS-Cmin

(aHS-Cmin

(x, t), t) = P

otherwise. We henceforth ignore the superscripts for simplicity. Accordingly in the first Tmin− 1 periods of

a cycle, worker i earns an expected value equal to vi
∑Tmin−2

t=0 (δ(1− pi))
t. For the continuation value, we

consider two scenarios.
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• First, suppose that worker 1 has an issue during the first Tmin− 1 periods, which happens with proba-

bility 1−(1−p1)
Tmin−1. In that case, coordination happens in period Tmin, giving worker i a discounted

value of δT
min

Vi(0,0).

• Second, suppose that worker 1 has no issue during the first Tmin − 1 periods, which hap-

pens with probability (1 − p1)
Tmin−1. In that case, production continues until worker 1 has

an issue, which happens with probability p1. In that scenario, worker 1’s discounted expected

value, from period Tmin − 1 onwards, is equal to δT
min−1 (v1 + p1δ

2Vi(0,0))/ (1− δ(1− p1))

and worker i’s discounted expected value, from period Tmin − 1 onwards, is equal to

δT
min−1

(
(1− pi)

Tmin−1vi/(1− δ(1− p1)(1− pi))+ p1δ
2Vi(0,0)/(1− δ(1− p1))

)
.

Combining both scenarios, we obtain

Vi(0,0) =vi

Tmin−2∑
t=0

(δ(1− pi))
t +
(
1− (1− p1)

Tmin−1
)
δT

min

Vi(0,0)

+ (1− p1)
Tmin−1 p1

1− δ(1− p1)
δT

min+1Vi(0,0)+ (1− p1)
Tmin−1

δT
min−1

{ v1
1−δ(1−p1)

if i= 1

(1−pi)
Tmin−1vi

1−δ(1−p1)(1−pi)
if i ̸= 1.

Rearranging the terms gives the desired result.

Fourth, consider HS-Cmax with a maximum cycle duration of Tmax ≥ 2 periods. By (9) and (14),

AHS-Cmax

(aHS-Cmax

(x, t), t) = C for all x such that x1 > 0 if t < Tmax − 1 and all x if t ≥ Tmax − 1, and

AHS-Cmax

(aHS-Cmax

(x, t), t) = P otherwise. We henceforth ignore the superscripts for simplicity. We consider

in turn, worker 1 and then any other worker. First, consider worker 1. Starting from state (0,0), worker 1

earns v1 each period until she faces an issue. Hence, worker 1 earns v1
∑Tmax−2

t=0 δt(1− p1)
t = v1(1− (δ(1−

p1))
Tmax−1)/(1− δ(1− p1)) within a cycle. Second, consider worker i ̸= 1. Starting from state (0,0), worker

i earns vi each period until she faces an issue or until worker 1 faces an issue. Hence, worker i earns within

that cycle vi
∑Tmax−2

t=0 δt(1− pi)
t(1− p1)

t = vi(1− (δ(1− pi)(1− p1))
Tmax−1)/(1− δ(1− pi)(1− p1)). For the

continuation value, we consider two scenarios.

• First, suppose that worker 1 has an issue in period t, for any t ≤ Tmax − 3, which happens with

probability (1− p1)
tp1. The continuation value associated with that event is δt+2Vi(0,0).

• Second, suppose that worker 1 has not encountered an issue by the end of period Tmax − 3, which

happens with probability (1− p1)
Tmax−2. In that case, coordination must happen in period Tmax − 1

and the continuation value associated with that scenario is δT
max

Vi(0,0).

Combining both scenarios, we obtain, for any i:

Vi(0,0) =

Tmax−3∑
t=0

δt+2(1− p1)
tp1Vi(0,0)+ δT

max

(1− p1)
Tmax−2Vi(0,0)+

{
v1

1−(δ(1−p1))
Tmax−1

1−δ(1−p1)
if i= 1

vi
1−(δ(1−pi)(1−p1))

Tmax−1

1−δ(1−pi)(1−p1)
if i ̸= 1.

Rearranging the terms gives the desired result. □

Lemma EC.4. Suppose that Assumption 1 holds. Then,

V PC
i =

vi

(1− δ)
(
1+ δ

(
1−

∏n

j=1(1− pj)
))
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V PP
i =

vi
1− δ(1− pi)

· 1

1−
∑∞

t=0 δ
t+2

(∑n

j=1 pj(1− pj)t
(∏j−1

k=1 (1− (1− pk)t)
)
·
(∏n

k=j+1 (1− (1− pk)t+1)
))

V HS
i =

{
v1

(1−δ)(1+δp1)
if i= 1

vi(1−δ(1−p1))

(1−δ)(1+δp1)(1−δ(1−p1)(1−pi))
if i ̸= 1.

Proof. The proof follows from Lemma EC.3 in appendix by considering minimum cycles of Tmin = 2 in

V PC-Cmin

i and V HS-Cmin

i and maximum cycles Tmax→∞ periods in V PP-Cmax

i and V HS-Cmax

i . □

Proposition 4 characterizes how PC, PP, and HS compare to each other as team size n increases.

Proof of Proposition 4. The proof consists of comparing the value functions derived in Lemma EC.4

in appendix. For any other worker i, when pj = p for all j, V HS
i is independent of n, while V PC

i and

V PP
i are decreasing (convex) in n. That V PP

i is decreasing (convex) in n may not be obvious at first,

but becomes apparent once we use the following equality:
∑∞

t=0 δ
t+2((1− (1− p)1+t)n − (1− (1− p)t)n) =

(1− δ)
∑∞

t=0 δ
t+1(1− (1− p)t)n. Hence, as n increases, there is at most one crossing between V HS

i and V PC
i

(V PP
i ), and if there is one, it is from above.

Moreover,

V PP
i ≥ V PC

i ⇔ vi
(1− δ) (1+ δ (1− (1− p)n))

≤ vi
(1− δ(1− p)) (1− (1− δ)

∑∞
t=0 δ

t+1 (1− (1− p)t)
n
)

⇔ (1− δ) (1+ δ (1− (1− p)n))≥ (1− δ(1− p))

(
1− (1− δ)

∞∑
t=0

δt+1 (1− (1− p)t)
n

)

⇔ F (n)
.
=−(1− p)n +(1− δ(1− p))

∞∑
t=0

δt (1− (1− p)t)
n− p+ δ− 1

1− δ
≥ 0.

Because

F ′′(n)
∣∣∣
F ′(n)=0

=

(
−(1− p)n (ln(1− p))

2
+(1− δ(1− p))

∞∑
t=0

δt (1− (1− p)t)
n
(ln (1− (1− p)t))

2

)
F ′(n)=0

= (1− δ(1− p))

∞∑
t=0

δt (1− (1− p)t)
n
ln (1− (1− p)t) (ln (1− (1− p)t)− ln(1− p)) ,

we obtain

d

dn

(
F ′′(n)

∣∣∣
F ′(n)=0

)
= (1− δ(1− p))

∞∑
t=0

δt (1− (1− p)t)
n
(ln (1− (1− p)t))

2
(ln (1− (1− p)t)− ln(1− p))

≤ (1− δ(1− p)) ln
(
1− (1− p)⌊

ln(p)
ln(1−p)⌋

)
×

∞∑
t=0

δt (1− (1− p)t)
n
ln (1− (1− p)t) (ln (1− (1− p)t)− ln(1− p))

= ln
(
1− (1− p)⌊

ln(p)
ln(1−p)⌋

)(
F ′′(n)

∣∣∣
F ′(n)=0

)
;

here, the inequality follows from (i) the following equivalence: ln (1− (1− p)t)− ln(1− p)≤ 0 if and only if

t≤ ln(p)

ln(1−p)
and (ii) that the function ln (1− (1− p)t) is increasing in t.

Accordingly, having F ′′(n)
∣∣∣
F ′(n)=0

≥ 0 implies that d
dn

(
F ′′(n)

∣∣∣
F ′(n)=0

)
≤ 0. Hence, the continuous func-

tion F ′′(n)
∣∣∣
F ′(n)=0

crosses zero at most once and the crossing is from above as n increases. Accordingly, F (n)
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has at most two stationary points, and if it does have two, the first one is a local minimum and the second

one is a local maximum. Thus, F (n) crosses zero at most thrice and if it does, it is first from above, then

from below, and finally from above. Because F (0) = 1− p and F (1) = 0, F (n) crosses zero at most twice

when n≥ 2. That is, there are two thresholds, nL and nU , with 1< nL ≤ nU ≤∞ such that F (n)≥ 0, i.e.,

such that V PP
i ≥ V PC

i , if and only if n ∈ [nL, nU ]. Since this applies for every worker i, V PP ≥ V PC if and

only if n∈ [nL, nU ]. For instance, consider δ= 0.75 and p= 0.27; in that case, nL = 6 and nU = 24. □

Proposition 5 states that, for team size n large enough, PC-Cmin and PP-Cmax dominate HS-Cmin and

HS-Cmax.

Proof of Proposition 5. The proof follows from the first two bullet points of Proposition 8, which is shown

independently. □

EC.2.4. Fixed Interval Coordination Scheduling Rules

The proof of Proposition 6 uses several preliminary lemmas. First, Lemma EC.5 derives worker i’s value

function associated with the FI coordination scheduling rule. Second, Lemma EC.6 shows that the optimal

cycle duration under FI is decreasing in the coordination demands. Third, Lemma EC.7 derives the first-

order optimality conditions for the optimal cycle duration under FI. The next two lemmas, namely Lemmas

EC.8 and EC.9, are more technical in nature; they show that certain algebraic expressions are monotone,

which will be useful to derive a worst-case bound on the optimality gap of the FI coordination scheduling

rule, established in Lemma EC.10.

Lemma EC.5. Suppose that Assumption 1 holds. Under FI with cycle duration of T > 1 periods,

V FI
i (T ) =

vi
1− δ(1− pi)

· 1− δT−1(1− pi)
T−1

1− δT
.

Proof. Under FI, workers coordinate every T > 1 periods, yielding V FI
i (T ) =

∑∞
τ=0 δ

Tτ
∑T−2

t=0 viδ
t(1 −

p)t. □

Lemma EC.6. For any p ∈ (0,1) and δ ∈ (0,1), argmaxT∈{2,3,...}(1− (δ(1− p))T−1)/(1− δT ) is nonin-

creasing in p∈ (0,1).

Proof. Define

F (p, δ,T )
.
=

1− (δ(1− p))T−1

(1− δT )
.

We first show that F (p, δ,T ) is pseudo-concave in T . Note that

∂F (p, δ,T )

∂T
=

1− (δ(1− p))T−1

1− δT

(
δT ln(δ)

1− δT
− (δ(1− p))T−1 ln (δ(1− p))

1− (δ(1− p))
T−1

)
.

We consider two cases. First, suppose that δT < (δ(1− p))T−1. Because the function x ln(x)/(1− x) is

decreasing when x∈ [0,1], we obtain

T − 1

T

δT ln(δT )

1− δT
−

(δ(1− p))T−1 ln
(
(δ(1− p))

T−1
)

1− (δ(1− p))
T−1 >

(
T − 1

T
− 1

) (δ(1− p))T−1 ln
(
(δ(1− p))

T−1
)

1− (δ(1− p))
T−1 ≥ 0,
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i.e., ∂F (p, δ,T )/∂T > 0.

Second, suppose that δ≥ (1− p)T−1. When ∂F (p, δ,T )/∂T = 0,

∂2F (p, δ,T )

∂T 2

∣∣∣
∂F (p,δ,T )

∂T
=0

=
1− (δ(1− p))T−1

1− δT

(
δT (ln(δ))

2

(1− δT )2
− (δ(1− p))

T+1
(ln (δ(1− p)))

2

(δ(1− p)− (δ(1− p))T )
2

)
∂F (p,δ,T )

∂T
=0

=−1− (δ(1− p))T−1

1− δT
× (δ(1− p))T (δ(1− p)− (1− p)T ) (ln(δ(1− p))

2

(δ(1− p)− (δ(1− p))T )
2

≤ 0,

in which the inequality is because δ ≥ (1 − p)T−1. Combining both cases, we establish that F (p, δ,T ) is

pseudo-concave in T .

Next, observe that

∂

∂p

(
F (p, δ,T +1)

F (p, δ,T )

)
=

∂

∂p

(
1− (δ(1− p))T

1− (δ(1− p))T−1
× 1− δT

1− δT+1

)
≤ 0⇔ Tδ(1− p)− (δ(1− p))T − (T − 1)≤ 0

since the function Tx− xT − (T − 1) is nondecreasing in x, for any x ∈ [0,1], which yields that Tx− xT −
(T − 1)≤ T − 1− (T − 1) = 0. Hence, for any T , if F (p, δ,T )≥ F (p, δ,T + 1) for some p, then F (p′, δ, T )≥
F (p′, δ, T +1) for all p′ ≥ p.

Let T ′ .
= argmaxT∈{2,3,...}F (p, δ,T ). Because F (p, δ,T ) is pseudo-concave, F (p, δ,T ′) ≥ F (p, δ,T ′ + 1) ≥

F (p, δ,T ′ +2) and so on. Therefore, for any p′ ≥ p, F (p′, δ, T ′)≥ F (p′, δ, T ′ +1)≥ F (p′, δ, T ′ +2) and so on.

Hence, argmaxT∈{2,3,...}F (p′, δ, T )≤ T ′, i.e., argmaxT∈{2,3,...}F (p, δ,T ) is nonincreasing in p. □

Lemma EC.7. Suppose that Assumption 1 holds. Let T ∗ = argmaxT∈{2,3,...} V
FI(T ). Then, T ∗ ∈

{⌊T̃ ⌋, ⌈T̃ ⌉} if T̃ ≥ 2 and T ∗ = 2 otherwise, in which T̃ is the unique solution to:

n∑
i=1

vi
1− (δ(1− pi))

T−2

1− δT

(
1

T

δT ln(δT )

1− δT
− 1

T − 1

(δ(1− pi))
T−1 ln ((δ(1− pi))

T−1)

1− (δ(1− pi))
T−1

)
= 0. (EC.7)

Moreover, T ∗ is nonincreasing in pi, for any i. When pi = p for all i, T ∗ is independent of vj, for any j.

Proof. The proof uses Lemmas EC.5 and EC.6 in appendix, which respectively derive a closed-form

solution for V FI
i and show the monotonicity of T ∗ with respect to pi for any i. The proof consist in showing

that V FI(T ) is pseudoconcave and then using the first-order optimality conditions to characterize T ∗. For

any i, define αi
.
= vi/(1− δ(1− pi)). Then, by Lemma EC.5,

V FI(T ) =

n∑
i=1

αi

1− δT−1(1− pi)
T−1

1− δT
.

We next show that V FI(T ) is pseudoconcave. When dV FI(T )/dT = 0, i.e.,

δT−1

(1− δT )2

(
n∑

i=1

αi

(
log(δ)(δ− (1− pi)

T−1)− log(1− pi)(1− pi)
T−1(1− δT )

))
= 0,

the second derivative is negative:

d2V FI(T )

dT 2

∣∣∣
dV FI (T )

dT
=0

=
d

dT

(
n∑

i=1

αi

(
log(δ)(δ− (1− pi)

T−1)− log(1− pi)(1− pi)
T−1(1− δT )

))

=−
n∑

i=1

αi(1− δT ) (log(1− pi)+ log(δ)) log(1− pi)(1− pi)
T−1
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<0.

Hence, every stationary point is a local maximum, i.e., V FI(T ) is pseudoconcave.

By definition, T̃ solves dV FI(T )/dT = 0. Since V FI(T ) is pseudoconcave, T̃ = argmaxV FI(T ). If T̃ ≤ 2,

then T ∗ = 2. If T̃ > 2, then T ∗ equals the integer just below T̃ or above T̃ .

By Lemma EC.6, T ∗ is nonincreasing in pi, for any i. If pi = p for all i, T ∗ maximizes (1 − δT−1(1 −
p)T−1)/(1− δT ) and is thus independent of αi. □

Lemma EC.8. For any p∈ (0,1) and δ ∈ (0,1), the function

F (p, δ,T )
.
=

1− (δ(1− p))T−1

(1− δT )
× (1− δ)(1+ pδ)

(1− δ(1− p))
.

is nonincreasing in p, for any T ≥ 4.

Proof. We first show that when T ≥ 4, ∂F (p,δ,T )

∂p
≥ 0⇒ ∂2F (p,δ,T )

∂p∂T
< 0. Fix T ≥ 4 and p and suppose that

∂F (p, δ,T )/∂p≥ 0, i.e.,

−δ3(1− p)2 +(δ(1− p))T
(
(T − 1)(1− δ)+ δ2(1− p)2 + δ2p2(T − 2)+ pδ(T − 1)(2− δ)+ pδ2

)
≥ 0.

Then, using first the logarithmic inequality, ln(x)≤ x− 1 for any x > 0, and then the fact that T ≥ 4, we

obtain

∂2F (p, δ,T )

∂p∂T

∣∣∣
∂F (p,δ,T )

∂p
≥0

=
(1− δ)

δ(1− δT )2(1− p)2(1− δ(1− p))2
δT ln(δ)

×
(
−δ3(1− p)2 +(δ− δp)T

(
(T − 1)(1− δ)+ δ2(1− p)2 + δ2p2(T − 2)+ pδ(T − 1)(2− δ)+ pδ2

))
+

(1− δ)

δ(1− δT )(1− p)2(1− δ(1− p))2
× (δ(1− p))T

×
(
1− δ2(1− p)p− δ(1− 2p)

+ ln (δ(1− p))×
(
(T − 1)(1− δ)+ δ2(1− p)2 + δ2p2(T − 2)+ pδ(T − 1)(2− δ)+ pδ2

))
≤ (1− δ)

δ(1− δT )(1− p)2(1− δ(1− p))2
× (δ(1− p))T

×
(
1− δ2(1− p)p− δ(1− 2p)

+ (δ(1− p)− 1)×
(
(T − 1)(1− δ)+ δ2(1− p)2 + δ2p2(T − 2)+ pδ(T − 1)(2− δ)+ pδ2

))
≤ (1− δ)

δ(1− δT )(1− p)2(1− δ(1− p))2
× (δ(1− p))T

×
(
1− δ2(1− p)p− δ(1− 2p)

+ (δ(1− p)− 1)×
(
(4− 1)(1− δ)+ δ2(1− p)2 + δ2p2(4− 2)+ pδ(4− 1)(2− δ)+ pδ2

))
=− (1− δ)

δ(1− δT )(1− p)2
× (δ(1− p))T (2− δ+3pδ)

<0.

Therefore, if there exists some p̂∈ (0,1) and T̂ > 4 such that ∂F (p̂, δ, T̂ )/∂p= 0, then, ∂2F (p̂, δ, T̂ )/∂p∂T <

0. Because ∂2F (p, δ,T )/∂p∂T is continuous in T , ∂2F (p̂, δ, T ′)/∂p∂T ≤ 0 for all T ′ ∈ (T̂ −γ, T̂ +γ), for some
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γ > 0. By the fundamental theorem of calculus, ∂F (p̂, δ, T ′)/∂p≥ ∂F (p̂, δ, T̂ )/∂p= 0 for all T ′ ∈ (T̂ − γ, T̂ ).

Hence, the function ∂F (p̂, δ, T )/∂p crosses zero from above at p̂. Since p̂ was chosen arbitrarily, we obtain that

∂F (p, δ,T )/∂p crosses zero at most once as T increases, for any T ≥ 4, and the crossing is from above. Since,

for any p, ∂F (p, δ,4)/∂p=−(δ2(1−δ+δp(4−3p)))/(1+δ+δ2+δ3)< 0, we conclude that ∂F (p, δ,T )/∂p≤ 0

for all p when T ≥ 4, i.e., F (p, δ,T ) is nonincreasing in p when T ≥ 4. □

Lemma EC.9. For any δ ∈ [0,1], the function

f(δ)
.
=

(
2+4δ+4δ2 + δ3−

√
δ(4+ δ(2+ δ)2)

)(
2+2δ+2δ2 + δ3 +

√
δ(4+ δ(2+ δ)2)

)
4(1+ δ+ δ2)3

is nonincreasing in δ.

Proof. Because

f ′(δ) =−δ(4+16δ+20δ2 +14δ3 +8δ4 + δ5)

2(1+ δ+ δ2)4
+

δ
3
2 (10+24δ+18δ2 +6δ3− 6δ4− 6δ5− δ6)

2(1+ δ+ δ2)4
√

4+ δ(2+ δ)2
,

f ′(δ)≤ 0⇔ δ
1
2 (10+24δ+18δ2 +6δ3− 6δ4− 6δ5− δ6)≤ (4+16δ+20δ2 +14δ3 +8δ4 + δ5)

√
4+ δ(2+ δ)2

⇔ δ(10+24δ+18δ2 +6δ3− 6δ4− 6δ5− δ6)2 ≤ (4+16δ+20δ2 +14δ3 +8δ4 + δ5)2(4+ δ(2+ δ)2)

⇔ −4(1+ δ+ δ2)4(16+55δ+60δ2 +20δ3 +2δ4)≤ 0,

and the latter inequality always holds. □

Lemma EC.10.

min
0≤p≤1,0≤δ≤1

max
T∈{2,3,...}

1− (δ(1− p))T−1

(1− δT )
× (1− δ)(1+ pδ)

(1− δ(1− p))
=

16+
√
13

27
,

and the minimum is achieved when δ= 1, p= (5−
√
13)/16 and T ∈ {3,4}.

Proof. The proof uses Lemmas EC.6, EC.8, and EC.9 in appendix. Let F (p, δ,T ) denote the objective

function. By Lemma EC.6, for any T ≥ 2, there exist breakpoints {p1, p2, p3, . . .} with p1 = 1 and pT ≤ pT−1

for any T > 1, such that, for any T̂ <∞, T̂ = argmaxT ′∈{2,3,...}F (p, δ,T ′) for all p∈ [pT̂ , pT̂−1]. In particular,

solving F (p, δ,2) = F (p, δ,3) for p yields that p2 = 1/(1+δ) and solving F (p, δ,3) = F (p, δ,4) for p yields that

p3 = (2+2δ+ δ2−
√
δ(4+4δ+4δ2 + δ3))/(2(1+ δ+ δ2)).

We first show that for any p, maxT∈{2,3,...}F (p, δ,T ) ≥ minp∈{p2,p3}maxT∈{2,3,...}F (p, δ,T ) =

minp∈{p2,p3}F (p, δ,3). On the one hand, for any p ≤ p3, maxT∈{2,3,...}F (p, δ,T ) ≥ F (p, δ,4) ≥ F (p3, δ,4) =

F (p3, δ,3), because F (p, δ,T ) is nonincreasing in p for all T ≥ 4 by Lemma EC.8 and p ≤ p3 and because

argmaxF (p3, δ, T ) = {3,4}. On the other hand, for any p ≥ p2, maxT∈{2,3,...}F (p, δ,T ) = F (p, δ,2) = (1 +

δp)/(1+ δ)≥ (1+ δp2)/(1+ δ) = F (p2, δ,2) = F (p2, δ,3) because argmaxF (p2, δ, T ) = {2,3}.
Therefore,

min
0≤p≤1,0≤δ≤1

max
T∈{2,3,...}

F (p, δ,T ) = min
p∈{p2,p3},0≤δ≤1

F (p, δ,3)

= min
0≤δ≤1

min

{
F

(
1

1+ δ
, δ,3

)
, F

(
2+2δ+ δ2−

√
δ(4+4δ+4δ2 + δ3)

2(1+ δ+ δ2)

)}
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= min
0≤δ≤1

min

 1+2δ

(1+ δ)2
,

(
2+4δ+4δ2 + δ3−

√
δ(4+ δ(2+ δ)2)

)(
2+2δ+2δ2 + δ3 +

√
δ(4+ δ(2+ δ)2)

)
4(1+ δ+ δ2)3

 .

By Lemma EC.9, the last term in brackets is nonincreasing in δ. Similarly, the term (1 + 2δ)/(1 + δ)2 is

nonincreasing since its derivative equals −2δ/(1+δ)3. Hence, both terms are minimized when δ= 1, yielding:

min
0≤p≤1,0≤δ≤1

max
T∈{2,3,...}

F (p, δ,T ) =min

{
3

4
,
16+

√
13

27

}
=

16+
√
13

27
,

and the bound is attained when p= p3 and δ= 1. □

Proposition 6 characterizes the robustness of the FI coordination scheduling rule and its sensitivity around

the optimal fixed cycle duration.

Proof of Proposition 6. The proof uses Lemmas EC.5 and EC.10 in appendix, which respectively derive

a closed-form solution for V FI
i and a worst-case on an algebraic expression, which will turn out to correspond

to V FI(T )/V FB. The idea of the proof is to derive a worst-case bound on V FB−V FI(T ) across all problem

instances. The worst case turns out to be attained when
∑

i
f(xi)∈ {0,

∑
i
fi(0)}, which can be achieved with

only one worker and a binary productivity function. For this type of problem instance, the ratio V FI(T )/V FB

can be expressed as a function of δ and the likelihood of having at least one question, denoted by p, and this

expression can be bounded from below using Lemma EC.10.

Fix any T ′ ≥ T − 1 and suppose coordination must happen by time T ′ +1 under π ∈ {FI,FB}. Since T ′ is

chosen arbitrarily, this is without loss of generality. Let σ = (ξσ
1 ,ξ

σ
2 , . . . ,ξ

σ
T ′−1) be a sample path defined as

follows: In any period t and state x, if production takes place, transitions occur to state x+ξσ
t+1. We denote

by ξσt,i the ith component of ξσ
t . Let Pσ be the probability of sample path σ and let UT ′ be the set of all

possible sample paths. For π ∈ {FI,FB}, let 1≤ θπσ ≤ T ′ be the number of periods of production under π on

σ until coordination happens. Obviously, θFI
σ = T − 1. By Proposition 1, fi

(
0+

∑t

k=1 ξ
σ
k,i

)
>ϕ if and only if

t≤ θFB
σ . Accordingly, we have

V FI(T ) =
∑
σ

Pσ

T−2∑
t=0

δt
n∑

i=1

fi

(
0+

t∑
k=1

ξσk,i

)
+ δTV FI(T ) =

1

1− δT

∑
σ

Pσ

T−2∑
t=0

δt
n∑

i=1

fi

(
0+

t∑
k=1

ξσk,i

)
,

and similarly,

V FB =
1

1−
(∑

σ
Pσδθ

FB
σ +1

)∑
σ

Pσ

θFB
σ −1∑
t=0

δt
n∑

i=1

fi

(
0+

t∑
k=1

ξσk,i

)
.

For any x, denote the set of sample paths that visit state x under either FI or FB before coordination

happens by S(x) = {σ ∈ UT ′ : ∃t≤max{T, θFB
σ } : x=

∑t

k=1 ξ
σ
t } and the time at which this visit happens on

σ by τσ(x). (If σ ̸= S(x), set τσ(x)>T ′.). Accordingly,

V FB−V FI(T ) =
∑
x≥0

∑
σ∈S(x)

Pσδ
τσ(x)

 1[τσ(x)< θFB
σ ]

1−
(∑

σ′ Pσ′δθ
FB
σ′ +1

) − 1[τσ(x)<T − 1]

1− δT

( n∑
i=1

fi(xi)

)
.

We next propose an iterative algorithm that increases the gap V FB − V FI(T ). An iteration starts as fol-

lows. Suppose that there exists a state x such that
∑

i
fi(xi) > ϕ, i.e., such that τσ(x) < θFB

σ for all σ ∈
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S(x), and that
∑

σ∈S(x) Pσδ
τσ(x)

(
1[τσ(x)<θFB

σ ]

1−
(∑

σ′ Pσ′δ
θFB
σ′ +1

) − 1[τσ(x)<T−1]

1−δT

)
< 0. Since the coefficient of

∑
i
fi(xi) in

V FB− V FI(T ) is negative, V FB− V FI(T ) is maximized when
∑n

i=1 fi(xi) is as small as possible. Replacing∑n

i=1 fi(xi) with ϕ thus strictly increases V FB−V FI(T ). Moreover, if
∑n

i=1 fi(xi) = ϕ, it is no longer optimal

to produce until reaching state x by Proposition 1; that is, on all sample paths σ ∈ S(x), θFB
σ should decrease

to τσ(x). Doing so weakly increases the terms that are associated with all other states x′ ̸= x increase through

a decrease in the denominator 1−
(∑

σ′ Pσ′δθ
FB
σ′ +1

)
. If there is another such state, we proceed to another

iteration. If there is no other such state, the algorithm stops. Let us denote by f the revised productivity

functions and by θ
FB

σ the coordination times on same path σ under the FB policy associated with these

revised productivity functions. Hence,

V FB−V FI(T ) ≤
∑
x≥0

∑
σ∈S(x)

Pσδ
τσ(x)

 1[τσ(x)< θ
FB

σ ]

1−
(∑

σ′ Pσ′δθ
FB
σ′ +1

) − 1[τσ(x)<T − 1]

1− δT

( n∑
i=1

f i(xi)

)
.

As a result of the algorithm, for any state x, either
∑

i
f i(xi) > ϕ, i.e., τσ(x) < θ

FB

σ for all σ ∈ S(x) and∑
σ∈S(x) Pσδ

τσ(x)

(
1[τσ(x)<θ

FB
σ ]

1−
(∑

σ′ Pσ′δ
θFB
σ′ +1

) − 1[τσ(x)<T−1]

1−δT

)
> 0 or (ii)

∑
i
f i(xi) ≤ ϕ, i.e., τσ(x) ≥ θ

FB

σ for all σ ∈

S(x). In case (i), an upper bound on V FB−V FI(T ) is attained by replacing
∑

i
fi(xi) with

∑
i
fi(0). In case

(ii), an upper bound on V FB−V FI(T ) is attained by replacing
∑

i
fi(xi) with 0. That is,

V FB−V FI(T ) ≤
∑

x≥0:
∑

i f(xi)>ϕ

∑
σ∈S(x)

Pσδ
τσ(x)

 1

1−
(∑

σ′ Pσ′δθ
FB
σ′ +1

) − 1[τσ(x)<T − 1]

1− δT

( n∑
i=1

fi(0)

)
.

Hence, the worst-case suboptimality gap is achieved when the sum of the individual productivity functions

is binary, i.e.,
∑

i
fi(xi)∈ {0,

∑
i
fi(0)}.

Accordingly, we henceforth assume, without loss of generality and for simplicity, that n= 1, f(x) = v > 0 if

x= 0 and zero if x≥ 1, and let p
.
= P[ξ > 0]. Under the FB policy, the worker coordinates (with herself) each

time she has one question. Thus, V FB = v+δ2pV FB+δ(1−p)V FB = v/(1−δ2p−δ(1−p)) = v/[(1−δ)(1+pδ)].

Under the FI rule, by Lemma EC.5, V FI(T ) = v(1− (δ(1− p))T−1)/(1− δ(1− p))× 1/(1− δT ). Hence,

maxT∈{2,3,...} V
FI(T )

V FB
= max

T∈{2,3,...}

1− (δ(1− p))T−1

(1− δT )
× (1− δ)(1+ pδ)

(1− δ(1− p))
.

The result then follows from Lemma EC.10.

We finally show the sensitivity result, when T ∗ is ill-chosen. Similar to above,

V FI(T +1) =
1

1− δT+1

∑
σ

Pσ

T−1∑
t=0

δt
n∑

i=1

fi

(
0+

t∑
k=1

ξσk,i

)
.

The ratio V FI(T +1)/V FI(T ) is minimized if, on every sample path σ,
∑n

i=1 fi

(
0+

∑T−1
k=1 ξ

σ
k,i

)
= 0. This can

easily be achieved on every sample path by considering deterministic transitions, i.e., P[1] = 1 with fi(xi) = 0

if xi ≥ T − 1. Accordingly, we obtain:

V FI(T +1)

V FI(T )
=

1− δT

1− δT+1
×
∑T−2

t=0 δt
∑n

i=1 fi
(
0+

∑t

k=1 ξ
σ
k,i

)∑T−2
t=0 δt

∑n

i=1 fi
(
0+

∑t

k=1 ξ
σ
k,i

) = 1− δT

1− δT+1
.

For any T , (1− δT )/(1− δT+1) is nonincreasing in T . Therefore,

V FI(T ∗ +1)

V FI(T ∗)
≥ T ∗

T ∗ +1
≥ 2

3
,

The bound is tight since when δ→ 1 and p→ 1, T ∗ = 2. □
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Proposition 7 describes how PC, PP, HS, and FI compare to one another as team size n increases.

Proof of Proposition 7. The proof uses Lemmas EC.4, EC.5, and EC.7 in appendix, which respectively

derive a closed-form solution for V HS
i , for V FI

i , and provide an expression for the optimal fixed schedule T ∗.

We first show that the cycle duration under the FI rule is independent of
∑n

i=1 vi when pi = p. As a result,

the cycle duration that maximizes the sum of the workers’ value functions also maximizes each individual

worker’s value function. In contrast, the cycle duration under the HS rule is a random variable for all workers

i > 1 as it depends on worker 1’s likelihood of encountering issues. The comparison between the optimal

cycle duration and a random one will establish that V FI
i > V HS

i for all i > 1. Even though V HS
1 > V FI

1 , the

term
∑n

i=2(V
FI
i −V HS

i ) will end up dominating as n becomes large.

We first show that the cycle duration under the FI rule is independent of
∑n

i=1 vi when pi = p. By (EC.7)

in Lemma EC.7 and because pi = p for all i > 1, when n→∞, T ∗ ∈ {⌊T̃ ⌋, ⌈T̃ ⌉}, in which T̃ solves

0 =v1
1− (δ(1− p1))

T−2

1− δT

(
1

T

δT ln(δT )

1− δT
− 1

T − 1

(δ(1− p1))
T−1 ln ((δ(1− p1))

T−1)

1− (δ(1− p1))
T−1

)
+

∞∑
i=2

vi
1− (δ(1− p))T−2

1− δT

(
1

T

δT ln(δT )

1− δT
− 1

T − 1

(δ(1− p))T−1 ln ((δ(1− p))T−1)

1− (δ(1− p))
T−1

)
.

This implies that T̃ solves

0 =
1

T

δT ln(δT )

1− δT
− 1

T − 1

(δ(1− p))T−1 ln ((δ(1− p))T−1)

1− (δ(1− p))
T−1 .

Otherwise,

(
1
T

δT ln(δT )

1−δT
− 1

T−1

(δ(1−p1))
T−1 ln((δ(1−p1))

T−1)
1−(δ(1−p1))

T−1

)
should be infinite since

∑∞
i=2 vi =∞, which cannot

be true. Therefore, T ∗ = argmaxT∈{2,3,...}
vi

1−δ(1−p)

1−δT−1(1−p)T−1

1−δT
for every i≥ 1.

We next compare the value functions under the two policies and establish that V FI
i > V HS

i for all i > 1.

By Lemma EC.5,

V FI
i =

vi
1− δ(1− p)

1− δT
∗−1(1− p)T

∗−1

1− δT∗ =
vi
(
1− δT

∗−1(1− p)T
∗−1
)

1− δ(1− p)
+ δT

∗
V

FI

i ,

in which V
FI

i denotes the continuation value after the first production cycle. By Lemma EC.4, for any i > 1,

V HS
i =

∞∑
t=2

p1(1− p1)
t−2

(
vi (1− δt−1(1− p)t−1)

1− δ(1− p)
+ δtV

HS

i

)
, (EC.8)

in which V
HS

i denotes the continuation value after the first production cycle.

The proof of the comparison proceeds by induction. Fix i > 1 and suppose that V
FI

i ≥ V
HS

i , then

V FI
i ≥

vi
(
1− δT

∗−1(1− p)T
∗−1
)

1− δ(1− p)
+ δT

∗
V

HS

i

>

∞∑
T=2

p1(1− p1)
T−2

(
vi (1− δT−1(1− p)T−1)

1− δ(1− p)
+ δTV

HS

i

)
= V HS

i ;

here, the first inequality is by induction hypothesis and the second inequality follows from the optimality of

T ∗ and the fact that, under HS, the duration of the first production cycle is random.

Accordingly, since V FI
1 and V HS

1 are both independent of n,

lim
n→∞

1

n

n∑
i=1

V FI
i = lim

n→∞

1

n

n∑
i=2

V FI
i > lim

n→∞

1

n

n∑
i=2

V HS
i = lim

n→∞

1

n

n∑
i=1

V HS
i .
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By continuity, there exists a threshold ñ such that for all n≥ ñ, 1
n

∑n

i=1 V
FI
i ≥ 1

n

∑n

i=1 V
HS
i .

The second inequality follows from Proposition 4, which statement can be generalized so that p1 ̸= pi for

all i > 1. □

The proof of Proposition 8 uses several lemmas, namely, Lemmas EC.11, EC.12, and EC.13, all of which

are of technical nature, to establish either nonnegativity or monotonicity of algebraic expressions, which

emerge in the comparison of the value functions under FI and under PC-Cmin.

Lemma EC.11. For any δ ∈ (0,1), pi ∈ (0,1) and T ≥ 2,

F (T )
.
= (1− δ)δT (1− pi)

T−1 + δpi(1− δT )+ (1− δ)(1− δ− δT )> 0.

Proof. We first show that F (T ) is pseudoconvex and then that F ′(2)> 0, thereby showing that F ′(T )> 0

for all T ≥ 2. Observing that F (2) > 0 then establishes the result. The function F (T ) is pseudo-convex

because

F ′′(T )
∣∣∣
F ′(T )=0

= (1− δ)(1− pi)
T−1 ln(1− pi) (ln(δ)+ ln(1− pi))> 0.

Moreover, because −pi ln(δ) + (1− δ)(1− pi) ln(1− pi) is decreasing in δ since its derivative with respect

to δ equals −pi/δ− (1− pi) ln(1− pi)< pi(1− 1/δ)< 0 (here, we used the inequality − ln(1−x)<x/(1−x)

for all x< 1 and x ̸= 0),

F ′(2) =δ2 (−pi ln(δ)+ (1− δ)(1− pi) ln(1− pi))

>δ2 (−pi ln(δ)+ (1− δ)(1− pi) ln(1− pi))δ=1 = 0.

Combining these two facts, we obtain that F ′(T )> 0 for all T ≥ 2. As a result, F (T )≥ F (2) = (1− δ)(1−
δ(1− pi))> 0. □

Lemma EC.12. For any p∈ (0,1), δ ∈ (0,1) and T ≥ 2,

f(p, δ,T )
.
= (1− δ)2 + δp(1− δT )− δT (1− δ)(1− (1− p)T−1)> 0.

Proof. We first show that f(p, δ,T ) is pseudoconvex and then that f(p, δ,2)> 0, thereby showing that

∂f(p, δ,T )/∂T > 0 for all T ≥ 2. Observing that f(p, δ,2) > 0 then establishes the result. The function

f(p, δ,T ) is pseudoconvex in T because when ∂f(p, δ,T )/∂T = 0, i.e., when

− ln(δ)δp− ln(δ)(1− δ)+ (1− p)T−1(1− δ)(ln(δ)+ ln(1− p)) = 0,

∂2f(p, δ,T )

∂T 2

∣∣∣
∂f(p,δ,T )

∂T
=0

= ln(1− p)(1− p)T−1(1− δ)(ln(δ)+ ln(1− p))> 0.

Moreover,

∂f(p, δ,2)

∂T
=δ2 (− ln(δ)δp− ln(δ)(1− δ)+ (1− p)(1− δ)(ln(δ)+ ln(1− p)))

= δ2 (−p ln(δ)+ (1− p)(1− δ) ln(1− p))

≥ δ2(1− δ) (−p+(1− p) ln(1− p))> 0.

Therefore, ∂f(p, δ,T )/∂T > 0 for all T ≥ 2. Thus for any T ≥ 2, f(p, δ,T )≥ f(p, δ,2) = (1− δ)2 + δp(1− δ)>

0. □



e-companion to : Scheduling Rules for Team Coordination ec25

Lemma EC.13. For any P ∈ (0,1), δ ∈ (0,1) and T ≥ 2,

f(P, δ,T )
.
=−(1− δT )+ δP (1− δT )−P T−1(1− δ)δT−1

is nondecreasing in P .

Proof. Because ∂2f(P, δ,T )/∂P 2 ≤ 0, f(P, δ,T ) is concave in P . Hence, f(P, δ,T ) is nondecreasing for all

P ∈ [0,1] if and only if ∂f(1, δ, T )/∂P = δ(1− δT )− (T − 1)(1− δ)δT−1 ≥ 0. Let g(δ,T )
.
= δ(1− δT )− (T −

1)(1− δ)δT−1. Because
∂2g(δ,T )

∂T 2

∣∣∣
∂g(δ,T )

∂T
=0

=−δT−1 ln(δ)(1− δ)> 0

and because g(δ,2) = δ2(1 − δ) > 0, g(δ,T ) > 0 for all T ≥ 2. Hence, ∂f(1, δ, T )/∂P > 0 and therefore

∂f(P, δ,T )/∂P ≥ 0 for all P ∈ [0,1]. □

Proposition 8 compares PC-Cmin, PP-Cmax, HS-Cmin, and HS-Cmax with FI.

Proof of Proposition 8. The proof uses Lemmas EC.3, EC.5, EC.11, EC.12, and EC.13 in appendix. We

prove all bullet points independently of each other.

• To show the first bullet point in the proposition, fix T . By Lemmas EC.3 and EC.5, V PC-Cmin

i (T ) ≥

V FI
i (T ) if and only if

vi

(
1−(δ(1−pi))

T−1

1−δ(1−pi)
+

(
∏n

j=1(1−pj))
T−1

δT−1

1−δ
∏n

j=1(1−pj)

)
1−

(∏n

j=1(1− pj)
)T−1

δT+1
1−
∏n

j=1(1−pj)

1−δ
∏n

j=1(1−pj)
−
(
1−

(∏n

j=1(1− pj)
)T−1

)
δT

≥ vi
1− δ(1− pi)

· 1− δT−1(1− pi)
T−1

1− δT

⇔
δT−1

(∏n

j=1(1− pj)
)T−1

((1− δ)δT (1− pi)
T−1 + δpi(1− δT )+ (1− δ)(1− δ− δT ))

(1− δT )(1− δ(1− pi))

(
(1− δ)δT

(∏n

j=1(1− pj)
)T−1

+(1− δT )
(
1− δ

∏n

j=1(1− pj)
)) ≥ 0

⇔(1− δ)δT (1− pi)
T−1 + δpi(1− δT )+ (1− δ)(1− δ− δT )≥ 0.

By Lemma EC.11, the last inequality always holds. Hence, V PC-Cmin

i (T )≥ V FI
i (T ) for any T . Therefore,

maxTmin∈{2,3,...} V
PC-Cmin

i (Tmin)≥maxT∈{2,3,...} V
FI
i (T ).

By Lemmas EC.3 and EC.5, V PP-Cmax

i (T )≥ V FI
i (T ) if and only if

vi
1−(δ(1−pi))

T−1

1−δ(1−pi)

1−
(∑T−3

t=0 (δ
t+2− δT )

(∑n

j=1 pj(1− pj)t
(∏j−1

k=1 (1− (1− pk)t)
)
·
(∏n

k=j+1 (1− (1− pk)t+1)
))

+ δT
)

≥ vi
1− δ(1− pi)

· 1− δT−1(1− pi)
T−1

1− δT

⇔1− δT ≥ 1−

(
T−3∑
t=0

(δt+2− δT )

(
n∑

j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
)))

+ δT

)
,

which always holds. Hence, V PP-Cmax

i (T ) ≥ V FI
i (T ) for any T . Therefore,

maxTmax∈{2,3,...} V
PP-Cmax

i (Tmax)≥maxT∈{2,3,...} V
FI
i (T ).
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• The second bullet point can be established in a similar way to the way the first inequality in Proposition

7 was derived, with the exception that (EC.8) needs to be modified as follows to reflect that HS-Cmin

has a minimum cycle duration of Tmin and that HS-Cmax has a maximum cycle duration of Tmax:

V HS-Cmin

i =

Tmin∑
T=1

p1(1− p1)
T−2

vi

(
1− δT

min−1(1− p)T
min−1

)
1− δ(1− p)

+ δT
min

V
HS-Cmin

i


+

∞∑
T=Tmin+1

p1(1− p1)
T−2

(
vi (1− δT−1(1− p)T−1)

1− δ(1− p)
+ δTV

HS-Cmin

i

)

V HS-Cmax

i =

Tmax−1∑
T=2

p1(1− p1)
T−2

(
vi (1− δT−1(1− p)T−1)

1− δ(1− p)
+ δTV

HS-Cmax

i

)

+

∞∑
T=Tmax

p1(1− p1)
T−2

(
vi
(
1− δT

max−1(1− p)T
max−1

)
1− δ(1− p)

+ δT
max

V
HS-Cmax

i

)

in which V
HS-Cmin

i and V
HS-Cmax

i denote the continuation values after the first production cycle. Despite

these modifications, the argument of the proof of Proposition 7 remains essentially identical and is

omitted for brevity.

• To show the third result, we separately consider PC-Cmin and then PP-Cmax. In both cases, first note

that the enhanced worker-driven coordination scheduling rule yields the same value as the FI policy

if someone wants to coordinate before or as soon as the minimum cycle duration has been reached

(under PC-Cmin) or if someone wants to produce up to the maximum cycle duration while another

worker wants to coordinate (under PP-Cmax). Taking these situations as base cases, one can use Taylor’s

theorem to bound from above the value under the enhanced worker-driven policies.

—First, we consider PC-Cmin. Denote P (n)
.
=
∏n

j=1(1− pj) and K
.
=

δT
min−1

(
(1−δ)2+δ(1−δT

min
))
)

(1−δT
min)

2 . By

Lemma EC.3,

V PC-Cmin

i (P (n)) =

vi

(
1−(δ(1−pi))

Tmin−1

1−δ(1−pi)
+ (P (n))T

min−1δT
min−1

1−δP (n)

)
1− (P (n))Tmin−1δTmin+1 1−P (n)

1−δP (n)
− (1− (P (n))Tmin−1) δTmin

.

By Lemma EC.5, V PC-Cmin

i (0) = V FI
i . Therefore, by Taylor’s theorem,

V PC-Cmin

i (P (n))≤ V PC-Cmin

i (0)+ max
P∈[0,1]

dV PC-Cmin

i (P )

dP
·P (n) = V FI

i + max
P∈[0,1]

dV PC-Cmin

i (P )

dP
·P (n).

We next derive a uniform bound on the right-hand side. For any P (n) ∈ [0,1], the derivative of

V PC-Cmin

i (P ) is bounded as follows:

dV PC-Cmin

i (P (n))

dP

=viδ
Tmin−1P Tmin−2(1+ (Tmin− 2)(1− δP (n)))

× (1− δ)2 + δpi(1− δT
min

)− δT
min

(1− δ)(1− (1− pi)
Tmin−1)

(1− δ(1− pi)) ((1− δTmin)(1− δP (n))+ δTmin(P (n))Tmin−1(1− δ))
2

≤vi
δT

min−1
(
(1− δ)2 + δpi(1− δT

min
)− δT

min
(1− δ)(1− (1− pi)

Tmin−1)
)

(1− δ(1− pi)) (1− δTmin)
2
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≤viK.

Here, the first inequality follows from Lemmas EC.12 and EC.13 and the second inequality follows

from having 0≤ pi ≤ 1. Therefore,

V PC-Cmin

i (P (n))≤ V FI
i + max

P∈[0,1]

dV PC-Cmin

i (P )

dP
·P (n)≤ V FI

i + vi ·K ·P (n).

Because pi ≥ p for all i, P (n) ≤ (1− p)n and therefore V PC-Cmin − V FI ≤ nvK(1− p)n. For any

ϵ > 0, setting ñ >W (ln(1− p)ϵ/(vK))/ ln(1− p), in which W (x) is the principal solution for z in

x= zez, yields the desired result.

—Next, we consider PP-Cmax. Denote

Q(n)
.
=

Tmax−3∑
t=0

(δt+2− δT
max

)

(
n∑

j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
)))

and

Q
.
= max

n∈{2,3,...}
max

pi∈[p,p] ∀i

Tmax−3∑
t=0

(δt+2− δT
max

)

(
n∑

j=1

pj(1− pj)
t

(
j−1∏
k=1

(1− (1− pk)
t)

)
·

(
n∏

k=j+1

(
1− (1− pk)

t+1
)))

,

and note that Q is a uniform upper bound on Q(n) and that Q < 1 − δT
max

. Let also L
.
=

1
(1−δ)(1−Q−δT

max )2
.

By Lemma EC.3,

V PP-Cmax

i (Q(n)) =
vi

1−(δ(1−pi))
Tmax−1

1−δ(1−pi)

1−Q(n)− δTmax .

By Lemma EC.5, V PP-Cmax

i (0) = V FI
i . Therefore, by Taylor’s theorem,

V PP-Cmax

i (Q(n))≤ V PP-Cmax

i (0)+ max
Q∈[0,Q]

dV PP-Cmax

i (Q(n))

dQ
Q(n).

We next derive a uniform bound on the right-hand side. For any Q(n)∈ [0,Q], the derivative of

V PP-Cmax

i (Q) is bounded as follows:

dV PP-Cmax

i (Q(n))

dQ
=

vi
1

1−δ

(1−Q(n)− δTmax)2
≤ viL.

Therefore, by Taylor’s theorem,

V PP-Cmax

i (Q(n))≤ V FI
i + max

Q∈[0,Q]

dV PP-Cmax

i (Q(n))

dQ
Q(n)≤ V FI

i + vi ·L ·Q(n).

Because

nQ(n)≤n
Tmax−3∑

t=0

(δt+2− δT
max

)

(
n∑

j=1

1

t+1

(
1− 1

t+1

)t
(

j−1∏
k=1

(1− (1− p)t)

)
·

(
n∏

k=j+1

(
1− (1− p)t+1

)))

=n

Tmax−3∑
t=0

(δt+2− δT
max

)
((
1− (1− p)t+1

)n− (1− (1− p)t+1
)n) ·( t

(t+1)(1− p)

)t
1

p(1+ t)
,

limn→∞ nQ(n) = 0. Because nQ(n) is continuous, for any ϵ > 0, there exists a threshold ñ such that

nQ(n)vL< ϵ for all n≥ ñ, and therefore such that V PP-Cmax −V FI < ϵ for all n≥ ñ.

□
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EC.2.5. Equilibrium Characterization under General Productivity Functions with
No Base Value

To simplify the notations in the proofs, we henceforth assume that P[0] = 0. This is without loss of generality

by redefining fi(xi)← fi(xi)/(1−δP[0]) and P[ξ]← P[ξ]/(1−δP[0]) for all ξ≥ 0 and ξ ̸= 0. Moreover, we omit

the redundant time index in the value and policy functions since we restrict our attention to worker-driven,

time-independent rules.

To characterize the equilibrium policy under PC for general productivity functions (Proposition B-1),

we first establish that worker i’s value function is monotonic in the number of accumulated issues (Lemma

EC.14). We will then use this property to characterize a local property on worker i’s stated preferences,

which we will then use in the proof of Proposition B-1 to initialize an induction argument.

Lemma EC.14. Suppose that Assumption 1(i) holds. V PC
i (xi, x−i) is nonincreasing in (xi, x−i) for i= 1,2.

Proof. Throughout the proof, we omit the superscript PC. Fix i. The proof proceeds by induction. By

Lemma EC.1, there exists a state x̂≤ x such that ai(x) =C for all xi ≥ x̂i and a−i(x) =C for all x−i ≥ x̂−i.

Accordingly, A(x) =C for all x such that either xi ≥ x̂i or x−i ≥ x̂−i. Therefore, Vi(x) is constant and equal

to δVi(0) for all x such that either xi ≥ x̂i or x−i ≥ x̂−i.

Fix x≤ x̂ with x ̸= x̂ and suppose that Vi(x+ ξ) is nonincreasing in ξ for all ξ≥ 0, ξ ̸= 0. For any y≥ x,

we obtain

fi(xi)+ δE [Vi(x+ ξ)]≥fi(yi)+ δE [Vi(y+ ξ)] (EC.9)

f−i(x−i)+ δE [V−i(x+ ξ)]≥f−i(y−i)+ δE [V−i(y+ ξ)] , (EC.10)

because f ′
j(xj)≤ 0 for j = 1,2 and by induction hypothesis.

We next consider three exhaustive cases, depending on the equilibrium outcome and who exerts the

coordination preemption and show that the induction hypothesis is preserved, i.e., Vj(y)≤ Vj(x) for j = 1,2.

Case 1: a1(x) = a2(x) = P . In this case, A(x) = P by (1), i.e., Vj(x) = fj(xj) + δE [Vj(x+ ξ)]. We

consider two cases, depending on A(y).

• If A(y) = C, Vj(y) = δVj(0) for j = 1,2. By assumption, δVj(0) < fj(xj) + δE [Vj(x+ ξ)] for j = 1,2.

Therefore Vj(y)<Vj(x) for j = 1,2.

• If A(y) = P , Vj(y) = fj(yj)+ δE [Vj(y+ ξ)] for j = 1,2. Then, by (EC.9) and (EC.10), Vj(y)≤ fj(xj)+

δE [Vj(x+ ξ)] = Vj(x) for j = 1,2.

Case 2: ai(x) = P and a−i(x) =C. In this case, A(x) =C by (1), i.e., Vj(x) = δVj(0) for j = 1,2. By

(EC.10), f−i(y−i)+ δE [V−i(y+ ξ)]≤ f−i(x−i)+ δE [V−i(x+ ξ)]≤ δV−i(0); therefore, a−i(y) =C and by (1),

A(y) =C. Hence, Vj(y) = δVj(0) = Vj(x) for j = 1,2.

Case 3: a1(x) = a2(x) = C. In this case, A(x) = C by (1), i.e., Vj(x) = δVj(0) for j = 1,2. By (EC.9),

fj(yi)+ δE [Vj(y+ ξ)]≤ fj(xj)+ δE [Vj(x+ ξ)]≤ δVj(0) for j = 1,2. Therefore, ai(y) =C for j = 1,2 and by

(1), A(y) =C. Hence, Vj(y) = δVj(0) = Vj(x) for j = 1,2.

Combining all three cases shows that Vj(x)≤ Vj(y) for j = 1,2, completing the induction step. □
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Lemma EC.15. Suppose that Assumption 1(i) holds. If, for some i= 1,2, aPC
i (x) = P , aPC

i (xi +1, x−i) =

C, then aPC
i (xi, x−i +1) = P .

Proof. The proof uses Lemma EC.14 in appendix. Throughout the proof, we omit the superscript PC. The

proof proceeds by contradiction. Suppose that ai(x) = P , ai(xi+1, x−i) =C, but also that ai(xi, x−i+1) =C.

By Lemma EC.14, Vi(xi + ξi, x−i + 1 + ξ−i) ≥ Vi(y+ ξ) for any y ≥ (xi, x−i + 1) and any ξ ≥ 0. Hence

for any y≥ (xi, x−i +1), fi(xi)+ δE [Vi(xi + ξi, x−i + ξ−i +1)]≥ fi(yi)+ δE [Vi(y+ ξ)] because f ′
j(xj)≤ 0 for

j = 1,2 and because P[ξ] is independent of the current stock of questions. By (5), since ai(xi +1, x−i) =C,

we obtain that ai(y) =C. Hence, by (1), A(y) =C, and therefore, Vi(y) = δVi(0) for all y≥ (xi, x−i +1).

Using a similar logic with ai(xi, x−i +1) =C, we obtain: Vi(y) = δVi(0) for all y≥ (xi +1, x−i).

Combining these two results with the assumption that P[0] = 0, shows that E [Vi(x+ ξ)] = δVi(0). Hence,

by (5), ai(x) = P can be equivalently expressed as follows: fi(xi)+δ2Vi(0)> δVi(0). Similarly, ai(xi, x−i+1) =

C can be equivalently expressed as: fi(xi) + δ2Vi(0)≤ δVi(0). Clearly, both inequalities cannot hold at the

same time, and we therefore obtain a contradiction. □

Proposition B-1 characterizes the equilibrium policy under PC for general productivity function and

establishes, in particular, the existence of a “coordination trigger point”.

Proof of Proposition B-1. The proof uses Lemmas EC.14 and EC.15 in appendix. Lemma EC.14 estab-

lishes monotonicity of V PC
i (x), which will be useful to establish that worker i’s dominant strategy is a

threshold policy. In particular, Lemma EC.15 initiates an induction argument by showing that worker i’s

decision to produce in x, if she wants to coordinate with one more issue, is independent of x−i. Throughout

the proof, we omit the superscript PC. Fix i.

First, consider the “upper right corner,” where coordination arises. By Lemma EC.1, there exists a state

x̂≤ x such that ai(x) = C for all xi ≥ x̂i and a−i(x) = C for all x−i ≥ x̂−i. Accordingly, A(x) = C for all x

such that either xi ≥ x̂i or x−i ≥ x̂−i.

Second, consider all other regions where production arises. Specifically, we show by induction that ai(y) =

P for any y such that yi ≤ x̂i− 1 for i= 1,2. By (1), this will establish that A(x) = P for all x< x̂.

Fix i. We first consider the states at the boundary of the region of interest by showing that ai(x̂i−1, y−i) =

P for all y−i. The argument relies on two parts.

• By construction of x̂, there exists a value x−i such that ai(x̂i−1, x−i) = P . By (5), fi(x̂i−1)+δE[Vi(x̂i−

1+ξi, x−i+ξ−i)]> δVi(0). By Lemma EC.14, Vi(yi, y−i) is nonincreasing in y−i. Hence, for all y−i ≤ x−i,

fi(x̂i− 1)+ δE[Vi(x̂i− 1+ ξi, y−i + ξ−i)]≥ fi(x̂i− 1)+ δE[Vi(x̂i− 1+ ξi, x−i + ξ−i)]> δVi(0). Therefore

by (5), ai(x̂i− 1, y−i) = P for all y−i ≤ x−i.

• Because ai(x̂i, y−i) = C for all yi, applying Lemma EC.15 iteratively shows that, for all y−i > x−i,

fi(x̂i− 1)+ δE[Vi(x̂i− 1+ ξi, y−i + ξ−i)]> δVi(0). Therefore by (5), ai(x̂i− 1, y−i) = P for all y−i >x−i.

Combining these two results shows that ai(x̂i− 1, y−i) = P for all y−i.

We next consider the states that lie in the interior of the region of interest. By Lemma EC.14, Vi(y)

is nonincreasing in yi. Moreover, fi(yi) is nonincreasing. Hence, for any y such that yi ≤ x̂i − 1, fi(yi) +
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δE[Vi(yi + ξi− 1, y−i + ξ−i)]≥ fi(x̂i− 1)+ δE[Vi(x̂i− 1+ ξi, y−i + ξ−i)]> δVi(0). Therefore by (5), ai(y) = P

for any y such that yi ≤ x̂i− 1.

We next characterize the value of x̂. Since P[0] = 0 and A(x) =C for all x≥ x̂, x ̸= x̂, Vi(x̂i−1, x̂−i−1) =

f−i(x̂i − 1) + δ2Vi(0). Therefore, ai(x̂i − 1, x̂i − 1) = P ⇔ fi(x̂i − 1) + δ2Vi(0)> δVi(0)⇔ fi(x̂i − 1)> δ(1−
δ)Vi(0) and ai(x̂i, x̂−i) =C⇔ fi(x̂i)+δ2Vi(0)≤ δVi(0)⇔ fi(x̂i)≤ δ(1−δ)Vi(0). Combining these inequalities

and applying the same logic to worker −i yield the desired characterization of x̂. □

To characterize the equilibrium policy under PP for general productivity functions (Proposition B-2), we

first establish that worker i’s value function is monotonic in the number of accumulated issues, specifically,

increasing in xi and decreasing in x−i (Lemma EC.17). The proof of this monotonocity property is by

induction and, for the induction to be initialized, relies on a characterization of the value function in the

upper right area of the orthant x≥ 0, namely, when coordination happens in equilibrium under PP (Lemma

EC.16).

Lemma EC.16. Suppose that Assumption 1(i) holds. There exists a threshold x̂i ≤ xi such that, for all

xi ≥ x̂i and for all x−i, a
PP
i (x) = C and V PP

−i (x) is constant in xi and nonincreasing in x−i. Moreover, for

all xi ≥ xi and for all x−i, V
PP
i (x) is constant in xi and nondecreasing in x−i.

Proof. In the proof, we omit the ‘PP’ superscript. By Lemma EC.1, there exists a state x̂≤ x such that

ai(x) =C for all xi ≥ x̂i.

We next characterize the value functions by induction. The initialization step is common to both V−i(x)

and Vi(x). For any x ≥ x, aj(x) = C for j = 1,2 by Lemma EC.1. Hence, by (2), A(x) = C. Therefore,

Vj(x) = δVj(0) for j = 1,2, which are both constant.

Building on this initialization step, we next show the result regarding V−i(x), namely that V−i(x) is

constant in xi and nonincreasing in x−i for any x such that xi ≥ x̂i. Consider some x such that xi ≥ x̂i and

x ̸≥ x and suppose that V−i(x+ ξ) is constant in ξi and nonincreasing in ξ−i, for all ξ ≥ 0 and ξ ̸= 0. For

any y≥ x, we thus obtain that f−i(x−i)+δE [V−i(x+ ξ)]≥ f−i(y−i)+δE [V−i(y+ ξ)] because f ′
−i(x)≤ 0 and

by the induction hypothesis, and the inequality is tight when x−i = y−i. Moreover, since xi ≥ xi, ai(x) =C.

Accordingly, by (2), V−i(x) =max{δV−i(0), f−i(x−i)+ δE[V−i(x+ ξ)]}. Therefore, for any y≥ x

V−i(x) = max{δV−i(0), f−i(x−i)+ δE [V−i(x+ ξ)]}

≥ max{δV−i(0), f−i(y−i)+ δE [V−i(y+ ξ)]}= V−i(y), (EC.11)

with equality when x−i = y−i.

We finally show the result regarding Vi(x), building on the initialization step above, namely, that Vi(x) is

constant in xi and nondecreasing in x−i for any x such that xi ≥ xi. Consider some x such that xi ≥ xi and

x−i <x−i and suppose that Vi(x+ ξ) is constant in ξi and nondecreasing in ξ−i for all ξ≥ 0 and ξ ̸= 0. For

any y≥ x, we obtain that

δE [Vi(x+ ξ)]≤ δE [Vi(y+ ξ)] (EC.12)

by the induction hypothesis, and the inequality is tight when x−i = y−i. To finalize the induction step, we

consider two cases.
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• Suppose that a−i(y) =C. Since ai(y) =C given that yi ≥ xi ≥ xi, A(y) =C by (2). Therefore, Vi(y) =

δVi(0). Since ai(x) =C given that xi ≥ xi, δVi(0)≥ Vi(x) by (5), and therefore, Vi(y)≥ Vi(x). Moreover,

this holds at equality if x−i = y−i since in that case δV−i(0)≥ f−i(y−i) + δE [V−i(y+ ξ)] = f−i(x−i) +

δE [V−i(x+ ξ)] given that (EC.12) is tight when x−i = y−i as shown above; hence, a−i(x) = C by (5),

and therefore A(x) =C, yielding that Vi(x) = δVi(0).

• Suppose that a−i(y) = P . Since ai(y) =C given that yi ≥ xi ≥ xi, A(y) = P by (2). Therefore, Vi(y) =

fi(yi) + δE [Vi(y+ ξ)] = δE [Vi(y+ ξ)] since f(yi) = 0 given that yi ≥ xi. Moreover a−i(x) = P since,

given that a−i(x) = P , (5), and (EC.11), we have δV−i(0)< V−i(y)≤ V−i(x). Thus, by (2), A(x) = P .

Hence, Vi(x) = fi(xi) + δE [Vi(x+ ξ)] = δE [Vi(x+ ξ)] since fi(xi) = 0 for all xi ≥ xi. As a result, using

(EC.12), we obtain Vi(x) = δE [Vi(x+ ξ)]≤ δE [Vi(y+ ξ)] = Vi(y), with equality when x−i = y−i.

Combining both cases shows that Vi(x)≤ Vi(y), with equality when x−i = y−i. □

Lemma EC.17. Suppose that Assumption 1(i) holds. V PP
i (xi, x−i) is decreasing in xi and increasing in

x−i for i= 1,2.

Proof. The proof uses Lemma EC.16 in appendix. In the proof, we omit the ‘PP’ superscript. Fix i. The

proof proceeds by induction. By Lemma EC.16, for all xi ≥ xi, Vi(xi, x−i) is constant in xi and nondecreasing

in x−i, whereas V−i(x−i, xi) is constant in xi and nonincreasing in x−i.

We next proceed to the induction step. Fix x such that xi < xi, and suppose, as induction hypothesis,

that Vj(x+ξ) is nonincreasing in ξj and nondecreasing in ξ−j for j = 1,2, for all ξ−j < 0 if ξj = 0 and all ξ−j

if ξj > 0. For any y such that yi ≥ xi and y−i ≤ x−i, we obtain

fi(xi)+ δE [Vi(x+ ξ)] ≥ fi(yi)+ δE [Vi(y+ ξ)] (EC.13)

f−i(x−i)+ δE [V−i(x+ ξ)] ≤ f−i(y−i)+ δE [V−i(y+ ξ)] , (EC.14)

because f ′
j(xj)≤ 0 for j = 1,2 and by induction hypothesis.

We next consider three exhaustive cases, depending on the equilibrium outcome and who exerts the

production preemption to establish that Vi(x)≤ Vi(y) and V−i(y)≥ V−i(x) for any y such that yi ≥ xi and

y−i ≤ x−i.

Case 1: aj(x) = C for j = 1,2. In this case, A(x) = C by (2), i.e., Vj(x) = δVj(0) for j = 1,2. We

consider two subcases, depending on A(y).

• If A(y) =C, Vj(y) = δVj(0) for j = 1,2, and therefore Vj(y) = Vj(x) for j = 1,2.

• If A(y) = P , then Vi(y) = fi(yi) + δE [Vi(y+ ξ)]. Then, by (EC.13), Vi(y) ≤ fi(xi) + δE [Vi(x+ ξ)].

Because fi(xi) + δE [Vi(x+ ξ)]≤ δVi(0) by (5) since ai(x) =C, we obtain that Vi(y)≤ δVi(0) = Vi(x).

In particular, ai(y) = C. Hence we must have that a−i(y) = P for A(y) = P to be true by (2), which

implies, by (5), that f−i(y−i)+ δE [V−i(y+ ξ)]> δV−i(0). Therefore, V−i(y)>V−i(x).

Case 2: ai(x) =C and a−i(x) = P . By (2), A(x) = P ; hence, Vj(x) = fj(xj)+δE [Vj(x+ ξ)] for j = 1,2.

By (EC.14), f−i(y−i)+δE [V−i(y+ ξ)]≥ f−i(x−i)+δE [V−i(x+ ξ)] and because ai(x) = P , by (5), f−i(x−i)+

δE [V−i(x+ ξ)]> δV−i(0); therefore a−i(y) = P , which implies, by (2), that A(y) = P . Hence, Vj(y) = fj(yj)+

δE [Vj(y+ ξ)] for j = 1,2. By (EC.13) and (EC.14), Vi(y)≤ Vi(x) and V−i(y)≥ V−i(x).
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Case 3: aj(x) = P for j = 1,2. In this case, A(x) = P by (2), i.e., Vj(x) = fj(xj) + δE [Vj(x+ ξ)] for

j = 1,2. We consider two subcases, depending on A(y).

• If A(y) = C, then Vj(y) = δVj(0) for j = 1,2. Since ai(x) = P , δVi(0)< fi(xi) + δE [Vi(x+ ξ)] by (5).

Hence, Vi(y) < Vi(x). Moreover, V−i(y) = δV−i(0) ≥ f−i(y−i) + δE [V−i(y+ ξ)] given that one must

have a−i(y) = C for having A(y) = C by (2). By (EC.14), f−i(y−i) + δE [V−i(y+ ξ)] ≥ f−i(x−i) +

δE [V−i(x+ ξ)]. Therefore, V−i(y)≥ V−i(x). (In fact, this case is infeasible since it implies that δV−i(0) =

V−i(y)≥ V−i(x)> δV−i(0).)

• If A(y) = P , then Vj(y) = fj(yj) + δE [Vj(y+ ξ)] for j = 1,2. Then, by (EC.13) and (EC.14), Vi(y)≤

Vi(x) and V−i(y)≥ V−i(x).

Combining all three cases shows that Vi(x)≤ Vi(y) and V−i(y)≥ V−i(x), completing the induction step. □

Proposition B-2 characterizes the structure of the PP equilibrium outcome.

Proof of Proposition B-2. The proof uses Lemmas EC.16 and EC.17 in appendix. Lemma EC.17 estab-

lishes monotonicity of V PP
i (x); unlike PC, worker i’s value is increasing in his co-workers needs x−i. Lemma

EC.16 characterizes the equilibrium in the “upper right” corner when both workers want to coordinate; the

characterization of the value functions in this region will be useful to initiate the induction in the other

regions. In the proof, we omit the ‘PP’ superscript. As in Lemma EC.16, define x̂ such that ai(x) = C for

any x such that xi ≥ x̂i, for i= 1,2. Hence by construction, A(x) =C in all states x≥ x̂.

First, consider the “upper left” (or “lower right”) region {x|xi ≥ x̂i, x−i ≤ x̂−i − 1}. To initialize the

characterization, we first consider its boundary of the region of interest. By definition of x̂, a−i(x̂−i−1, xi) =

P for some xi; by (5), V−i(x̂−i−1, xi)> δV−i(0). Fix this particular xi. If xi ≥ x̂i, V−i(x̂−i−1, xi) = V−i(x̂−i−

1, x̂i) by Lemma EC.16. If xi < x̂i, V−i(x̂−i−1, xi)≤ V−i(x̂−i−1, x̂i) by Lemma EC.17. Combining both cases,

we obtain that V−i(x̂−i− 1, x̂i + ξi)≥ V−i(x̂−i− 1, xi)> δV−i(0) for all ξi ≥ 0; thus, a−i(x̂−i− 1, x̂i + ξi) = P

for all ξi ≥ 0.

We next consider the interior of the region of interest. Consider any x such that xi ≥ x̂i and x−i < x̂−i.

By Lemma EC.16, V−i(y) is nonincreasing in y−i for all yi ≥ x̂i. Hence, V−i(x)≥ V−i(x̂−i− 1, xi)> δV−i(0);

thus, a−i(x) = P . By (2), A(x) = P .

In the lower right region, i.e., states x< x̂, the equilibrium characterization comes from Lemma EC.17

and (2).

We next characterize the value of x̂. For any i= 1,2, denote by pi the probability that worker i has at

least one issue. Then, because V−i(y) is constant in yi when yi ≥ x̂i by Lemma EC.16,

V−i(x̂−i− 1, x̂i) =f−i(x̂−i− 1)+ (1− p−i)δV−i(x̂−i− 1, x̂i)+ p−iδ
2V−i(0)

=
1

1− δ(1− p−i)
f−i(x̂−i− 1)+

p−iδ
2

1− δ(1− p−i)
V−i(0),

Therefore,

a−i(x̂−i− 1, x̂i) = P ⇔ 1

1− δ(1− p−i)
f−i(x̂−i− 1)+

p−iδ
2

1− δ(1− p−i)
V−i(0)> δV−i(0)

⇔ f−i(x̂−i− 1)> δ(1− δ)V−i(0),
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and

a−i(x̂) =C ⇔ f−i(x̂−i)+ δ2V−i(0)≤ V−i(0)⇔ f−i(x̂−i)≤ δ(1− δ)V−i(0).

Combining these inequalities and applying the same logic to worker i yield the desired characterization of

x̂. □

Proposition B-3 characterizes the structure of the HS equilibrium outcome.

Proof of Proposition B-3. This is a corollary of Proposition 1 with n= 1. □

EC.2.6. Equilibrium Characterization under Binary Productivity Functions with
Base Value and Team Incentives

In this appendix, we derive necessary and sufficient conditions such that the equilibrium characterizations

of PC, PP, and HS established under Assumption 1 using (1), (2), and (3) together with (9), remain valid in

the presence of a base value when workers have accumulated some issues (Appendix B.2) and in the presence

of team incentives (Appendix C). Lemmas EC.18, EC.19, and EC.20 respectively do so for PC, PP, and HS.

Lemma EC.18. Suppose that n = 2, that Assumption 1(i) holds, that fi(x) = bi + (vi − bi)1[x = 0] for

i= 1,2, and that wi(f(x)) = γfi(xi) + (1− γ)f−i(x−i) for i= 1,2. The policy APC(x) = P ⇔ x= 0 arises in

equilibrium under PC if and only if, for i= 1,2,

δ
γvi +(1− γ)v−i

1+ δ− δ(1− pi)(1− p−i)
≥ γbi +(1− γ)v−i. (EC.15)

Proof. Denote by π the policy such that Aπ(x) = P if and only if x= 0, and let V π
i (x) be the associated

value-to-go functions. Let also V π
i (x|P ) be worker i’s value-to-go if action P is chosen in state x and policy

π is then followed. For policy π to arise in equilibrium under PC, we need to have V π
i (x|P )≤ δV π

i (0) if and

only if xi ≥ 1. Similar to (EC.3), we obtain:

(1− δ(1− p1)(1− p2))V
π
i (0) = γvi +(1− γ)v−i + δ2 (1− (1− p1)(1− p2))V

π
i (0),

or equivalently,

V π
i (0) =

γvi +(1− γ)v−i

(1− δ) (1+ δ− δ(1− p1)(1− p2))
. (EC.16)

Without loss of generality, we can restrict our attention to the following four states:

{(0,0), (1,0), (0,1), (1,1)}. Out of these four possible values of x, we only need to consider two cases so

that worker i prefers to coordinate whenever xi ≥ 1, namely, x= (1,1) and x= (1,0). If so, coordination is

guaranteed to happen under PC when min{x1, x2} ≥ 1. When x1 = x2 = 0, production always happens since

Vi((0,0)|P ) = V π
i (0)> δV π

i (0) given that δ < 1.

First, Vi((1,1)|P )≤ δV π
i (0) if and only if

γbi +(1− γ)b−i + δ2 (1− (1− p1)(1− p2))V
π
i (0)≤ δV π

i (0) (1− δ(1− p1)(1− p2)) ,

or equivalently, γbi+(1−γ)b−i ≤ δ(1− δ)V π
i (0), which holds by (EC.15) after replacing V π

i (0) with (EC.16)

since b−i ≤ v−i.
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Second, Vi((1,0)|P )≤ δV π
i (0) if and only if

γbi +(1− γ)v−i + δ2p−iV
π
i (0)≤ δV π

i (0) (1− δ(1− p−i)) ,

or equivalently, γbi + (1 − γ)v−i ≤ δ(1 − δ)V π
i (0), which holds by (EC.15) after replacing V π

i (0) with

(EC.16). □

Lemma EC.19. Suppose that n = 2, that Assumption 1(i) holds, that fi(x) = bi + (vi − bi)1[x = 0] for

i= 1,2, and that wi(f(x)) = γfi(xi) + (1− γ)f−i(x−i) for i= 1,2. The policy APP(x) =C⇔ x≥ 1 arises in

equilibrium under PP if and only if, for i= 1,2,

γvi +(1− γ)b−i > δ(1− δ)Vi(0)≥ γbi +(1− γ)b−i, (EC.17)

in which

Vi(0) =

(
γvi

1− δ(1− pi)(1− p−i)

1− δ(1− pi)
+ (1− γ)v−i

1− δ(1− pi)(1− p−i)

1− δ(1− p−i)

+γbi
δpi(1− p−i)

1− δ(1− p−i)
+ (1− γ)b−i

δp−i(1− pi)

1− δ(1− pi)

)
(EC.18)

× (1− δ(1− pi))(1− δ(1− p−i))

(1− δ) (δ2(p21 + p22 + p1p2(1− δp1p2))+ δ(1− δ)(2− δp1p2)(p1 + p2)+ (1− δ)2(1− δp1p2))
.

Proof. Denote by π the policy such that A(x) =C if and only if x≥ 1, and let V π
i (x) be the associated

value functions, omitting the time argument. Let also V π
i (x|P ) be worker i’s value if action P were chosen

in state x and policy π were followed in the other states. For policy π to arise in equilibrium under PP, we

need to have V π
i (x|P )> δV π

i (0) if and only if xi = 0. We have:

(1− δ(1− p1)(1− p2))V
π
i (0) = γvi +(1− γ)v−i + δ2p1p2V

π
i (0)

+δpi(1− p−i)
γbi +(1− γ)v−i + p−iδ

2V π
i (0)

1− δ(1− p−i)

+δp−i(1− pi)
γvi +(1− γ)b−i + piδ

2V π
i (0)

1− δ(1− pi)
,

or equivalently, V π
i (0) is as defined by (EC.18).

Without loss of generality, we can restrict our attention to the following four states:

{(0,0), (1,0), (0,1), (1,1)}. Out of the four possible values of x, we only need to consider two cases so that,

when x−i = 1, worker i prefers to produce whenever if and only if xi = 0, namely, x= (1,1) and x= (0,1).

When x= 0, production always happens since Vi((0,0)|P ) = V π
i (0)> δV π

i (0) given that δ < 1. If so, produc-

tion is guaranteed to happen under PP when min{x1, x2}= 0.

First, Vi((1,1)|P )≤ δV π
i (0) if and only if

γbi +(1− γ)b−i + δ2 (1− (1− p1)(1− p2))V
π
i (0)≤ δV π

i (0) (1− δ(1− p1)(1− p2)) ,

or equivalently, γbi +(1− γ)b−i ≤ δ(1− δ)V π
i (0), which holds by (EC.17).

Second, Vi((0,1)|P )> δV π
i (0) if and only if

γvi +(1− γ)b−i + δ2 (1− (1− pi))V
π
i (0)> δV π

i (0) (1− δ(1− pi)) ,

or equivalently, γvi +(1− γ)b−i > δ(1− δ)V π
i (0), which holds by (EC.17). □
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Lemma EC.20. Suppose that n = 2, that Assumption 1(i) holds, that fi(x) = bi + (vi − bi)1[x = 0] for

i= 1,2, and that wi(f(x)) = γfi(xi)+ (1−γ)f−i(x−i) for i= 1,2. The policy AHS1(x) =C⇔ x1 ≥ 1 arises in

equilibrium under HS1 if and only if

γv1 +(1− γ)b2 > δ(1− δ)V1(0)≥ γb1 +(1− γ)v2, (EC.19)

in which

V1(0) =

(
γv1

1− δ(1− p1)(1− p2)

1− δ(1− p1)
+ (1− γ)v2 +(1− γ)b2

δp2(1− p1)

1− δ(1− p1)

)
(EC.20)

× (1− δ(1− p1))

(1− δ)(1− δ(1− p1)(1− p2))(1+ δp1)
.

Proof. Denote by π the policy such that A(x) =C if and only if x1 ≥ 1, and let V π
i (x) be the associated

value functions, omitting the time argument. Let also V π
i (x|P ) be worker i’s value if action P were chosen

in state x and policy π were followed in the other states. For policy π to arise in equilibrium under HS, we

need to have V π
1 (x|P ) > δV π

1 (0) if and only if x1 = 0. Similar to the proof of Lemma EC.4 or (EC.5), we

obtain:

(1− δ(1− p1)(1− p2))V
π
1 (0) = γv1 +(1− γ)v2 + δ2p1V

π
1 (0)+ δp2(1− p1)

γv1 +(1− γ)b2 + p1δ
2V π

1 (0)

1− δ(1− p1)
,

or equivalently, V π
1 (0) is as defined by (EC.20).

Without loss of generality, we can restrict our attention to the following four states:

{(0,0), (1,0), (0,1), (1,1)}. When x = 0, production always happens since V1((0,0)|P ) = V π
1 (0) > δV π

1 (0)

given that δ < 1. Let us consider the other three cases.

First, V1((1,0)|P )≤ δV π
1 (0) if and only if

γb1 +(1− γ)v2 + δ2p2V
π
1 (0)≤ δV π

1 (0) (1− δ(1− p2)) ,

or equivalently, γb1 +(1− γ)v2 ≤ δ(1− δ)V π
1 (0), which holds by (EC.19).

Second, V1((1,1)|P )≤ δV π
1 (0) if and only if

γb1 +(1− γ)b2 + δ2 (1− (1− p1)(1− p2))V
π
1 (0)≤ δV π

1 (0) (1− δ(1− p1)(1− p2)) ,

or equivalently, γb1 +(1− γ)b2 ≤ δ(1− δ)V π
1 (0), which holds by (EC.19) since b2 < v2.

Third, V1((0,1)|P )> δV π
1 (0) if and only if

γv1 +(1− γ)b2 + δ2 (1− (1− p1))V
π
1 (0)> δV π

1 (0) (1− δ(1− p1)) ,

or equivalently, γv1 +(1− γ)b2 > δ(1− δ)V π
1 (0), which holds by (EC.19). □

Proposition B-4 shows which equilibrium outcome under Assumption 1(ii), among the coordination

scheduling rules PC, PP, and HS, might be the most affected by the introduction of a base productivity

value.
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Proof of Proposition B-4. The proof uses Lemmas EC.18-EC.20 in the electronic companion, which char-

acterize the conditions under which the equilibrium policies considered in the main body of the paper under

PC, PP, and HS apply when productivity has a base value and in the presence of team incentives. When

γ = 1, condition (EC.15) simplifies to:

δ

1+ δ− δ(1− pi)(1− p−i)
≥ bi

vi
. (EC.21)

When γ = 1, condition (EC.17) simplifies to:

1− δ(1− p−i)(1− δ+(1− pi)(1+ δp−i))

δ2pi(1− p−i)
>

bi
vi

and
δ

1+ δpi

≥ bi
vi
.

It can be verified that 1−δ(1−p−i)(1−δ+(1−pi)(1+δp−i))> 0 so the first inequality is well defined. Since
1−δ(1−p−i)(1−δ+(1−pi)(1+δp−i))

δ2pi(1−p−i)
> δ

1+δpi
, the first inequality is redundant. Hence, the condition simplifies to

δ

1+ δpi

≥ bi
vi
. (EC.22)

When γ = 1, condition (EC.19) simplifies to:

δ

1+ δp1
≥ b1

v1
. (EC.23)

Set i= 2. The result follows from comparing (EC.21), (EC.22), and (EC.23) and noting that

∞>
δ

1+ δp2
≥ δ

1+ δ− δ(1− p1)(1− p2)
.

□

Proposition C-1 shows which equilibrium outcome in our base model, among the coordination scheduling

rules PC, PP, and HS, might be the most affected by the introduction of team incentives.

Proof of Proposition C-1. The proof uses Lemmas EC.18-EC.20 in the electronic companion, which char-

acterize the conditions under which the equilibrium policies considered in the main body of the paper under

PC, PP, and HS apply when productivity has a base value and in the presence of team incentives. Recall

also the definitions of α(p1, p2, δ) and β(p1, p2, δ) in (10).

When b= 0, condition (EC.15) simplifies to:

δ

1− δ(1− pi)(1− p−i)

vi
v−i

≥ 1− γ

γ
. (EC.24)

or equivalently, α(p1, p2, δ)
vi
v−i
≥ 1−γ

γ
, which generalizes Proposition 2.

When b= 0, condition (EC.17) simplifies to:

vi
v−i

1− δ(1− p−i)(1− δ+(1− pi)(1+ δp−i))

δ (1− δ(1− pi)(1− p−i))
>

1− γ

γ
, (EC.25)

or equivalently, when β(p−i, pi, δ)
vi
v−i
≥ 1−γ

γ
, which generalizes Proposition 2.

When b= 0, condition (EC.19) simplifies to:

v1
v2

min

{
1− δ(1− p1)(1− p2)

δ
,

δ(1− δ(1− p1)(1− p2))

(1+ δp1)(1− δ(1− p1)(1− p2))− δ(1− δ(1− p1))

}
≥ 1− γ

γ
, (EC.26)

or equivalently, when v1
v2

min
{

1
α(p1,p2,δ)

, 1
β(p1,p2,δ)

}
≥ 1−γ

γ
, which generalizes Proposition 2.
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The rest of the proof consists in comparing conditions (EC.24), (EC.25), and (EC.26), both when δ ≥

1− δ(1− p1)(1− p2) and when the opposite holds. It can easily be shown that α(p1, p2, δ)≥ 1 if and only if

β(p1, p2, δ)≤ 1 if and only if β(p2, p1, δ)≤ 1; and that α(p1, p2, δ)≥ 1 if and only if α(p1, p2, δ)β(p1, p2, δ)≥ 1

if and only if α(p1, p2, δ)β(p2, p1, δ)≥ 1.

First, suppose that δ≥ 1− δ(1− p1)(1− p2), i.e., α(p1, p2, δ)≥ 1. Accordingly,

α(p1, p2, δ)min

{
v1
v2

,
v2
v1

}
≥min

{
v1
v2

β(p2, p1, δ),
v2
v1

β(p1, p2, δ)

}
,

i.e., Condition (EC.24) is looser than (EC.25). Moreover, since α(p1, p2, δ)≥ 1,

v1
v2

β(p2, p1, δ) ≥
v1
v2

min

{
1

α(p1, p2, δ)
,

1

β(p1, p2, δ)

}
,

v2
v1

β(p1, p2, δ) ≥
v2
v1

min

{
1

α(p1, p2, δ)
,

1

β(p2, p1, δ)

}
.

Therefore,

min

{
v1
v2

min

{
1

α(p1, p2, δ)
,

1

β(p1, p2, δ)

}
,
v2
v1

min

{
1

α(p1, p2, δ)
,

1

β(p2, p1, δ)

}}
≤ min

{
v1
v2

β(p2, p1, δ),
v2
v1

β(p1, p2, δ)

}
,

i.e., Condition (EC.25) is looser than (EC.26), for at least one i∈ {1,2}. Finally, since α(p1, p2, δ)≥ 1,

v1
v2

min

{
1

α(p1, p2, δ)
,

1

β(p1, p2, δ)

}
≤ v2

v1
min

{
1

α(p1, p2, δ)
,

1

β(p2, p1, δ)

}
if and only if v1 ≤ v2.

Second, suppose that δ≤ 1− δ(1− p1)(1− p2), i.e., α(p1, p2, δ)≤ 1. Accordingly,

α(p1, p2, δ)min

{
v1
v2

,
v2
v1

}
≤

α(p1, p2, δ)
v1
v2
≤ v1

v2
min

{
1

α(p1,p2,δ)
, 1
β(p1,p2,δ)

}
α(p1, p2, δ)

v2
v1
≤ v2

v1
min

{
1

α(p1,p2,δ)
, 1
β(p2,p1,δ)

} ,

i.e., Condition (EC.24) is stricter than (EC.26) for i= 1,2. Moreover, since α(p1, p2, δ)≤ 1,

v1
v2

min

{
1

α(p1, p2, δ)
,

1

β(p1, p2, δ)

}
=

v1
v2

1

β(p1, p2, δ)
≤ v1

v2
β(p2, p1, δ)

v2
v1

min

{
1

α(p1, p2, δ)
,

1

β(p2, p1, δ)

}
=

v2
v1

1

β(p2, p1, δ)
≤ v2

v1
β(p1, p2, δ).

Therefore,

min

{
v1
v2

min

{
1

α(p1, p2, δ)
,

1

β(p1, p2, δ)

}
,
v2
v1

min

{
1

α(p1, p2, δ)
,

1

β(p2, p1, δ)

}}
≤ min

{
v1
v2

β(p2, p1, δ),
v2
v1

β(p1, p2, δ)

}
,

i.e., Condition (EC.25) is looser than (EC.26), for at least one i∈ {1,2}. □
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