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Abstract

We propose a novel time-series econometric framework to forecast U.S. Presidential election

outcomes in real time by combining polling data, economic fundamentals, and political pre-

diction market prices. Our model estimates the joint dynamics of voter preferences across

states. Applying our approach to the 2024 Presidential Election, we find a two-factor struc-

ture driving the vast majority of the variation in voter preferences. We identify electorally

similar state clusters without relying on historical data or demographic models of voter

behavior. Our simulations quantify the correlations between state-level election outcomes.

Failing to take the correlations into account can bias the forecasted win probability for a

given candidate by nearly 20 percentage points. We find Pennsylvania to be the most pivotal

state in the 2024 election. Our results provide insights for election observers, candidates,

and traders.
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1 Introduction

Elections matter. The results of legislative or presidential elections in countries around the world

have the potential to significantly and lastingly affect welfare (Nordhaus (1975), Persson, 2002,

Besley and Case, 2003). Uncertainty about who will win constitutes a major source of political risk.

Expectations about the outcome of an election may influence how firms invest, how households

consume, how policymakers regulate, and how candidates act to maximize their chances of winning

(see, e.g., Besley and Burgess, 2002, Drazen, 2008, Julio and Yook, 2012, Gulen and Ion, 2016,

Jens, 2017, Bonaime et al., 2018, Meeuwis et al., 2022).

United States plays a central role in global affairs, meaning the U.S. Presidential election

captures an especially high level of attention, (Ikenberry, 2001, Cha and Szechenyi, 2024, and

Foerster and Schmitz, 1997). However, the U.S. electoral system makes forecasting the outcome

of its election particularly challenging. There are 56 simultaneous regional elections being held in

all 50 states, the District of Columbia, and individual congressional districts in Maine (two) and

Nebraska (three).1 The winner of each is awarded a number of “electoral votes” (EVs) approxi-

mately proportional to the region’s population.2 To become the next President, a candidate must

secure the majority of these electoral votes (“win the electoral vote”). This stands in contrast

to electoral systems in most other presidential republics, where a candidate wins the election by

accumulating the most individual votes (“wins the popular vote”).

As a result, to form expectations about the winner of the presidential election, one needs to

model the joint distribution of all 56 election outcomes, and then consider all the combinations that

produce an electoral vote majority for a given candidate. In other words, a forecaster must produce

not just an expected probability of a candidate winning the election in every state (“marginal

distribution”) but also the changes in these probabilities given by the results in a particular

state (“conditional distribution”). Historically, such models were informal and based on heuristic

1To simplify terminology, we will refer to all regions, including D.C. and the congressional districts, as “states.”
2Each state’s number of EVs is equal to the number of congressional districts plus two. The U.S. constitution

gives each state the power to decide how they allocate their electoral votes. Most states allocate all of their EVs
to the winner in that state. Maine and Nebraska give the statewide winner two EVs, while giving one EV to the
winner of each district. For a comprehensive review of the U.S. presidential electoral system, see National Archives
(2024), which explains the composition and procedures of the Electoral College and its implications for presidential
elections.
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assessments of similarity between a given pair of states. It is common to hear statements like,

“Pennsylvania and Michigan vote the same because they’re both part of the Rust Belt region.”

More recently, quantitative models have emerged that formally characterize the joint distribution

as a correlated binomial.3 But, as made salient by the failures of such models for mortgage default

prediction during the Great Financial Crisis, they are especially sensitive to parameters governing

the correlation structure, which are particularly challenging to estimate.4

A key data input into these models are polls, which measure current voter preferences. One

approach could be to use polling data to estimate parameters of a joint distribution, governing

both marginal distributions and the correlation structure. However, polls can change day to day

either because some voters changed their mind or because the error, with which they measure

voter preferences, changed (see, e.g., Kenett et al. (2018) and Jennings and Wlezien (2018) on

polling inaccuracies). Only the former changes are relevant for disciplining the joint distribution,

yet it is not possible to separately identify them from polling data.

In this paper, we propose a time-series econometric framework that allows us to identify the

correlation structure between voter preferences in different states encoded in the beliefs of asset

market investors. Arrow et al. (2008), Snowberg et al. (2008), and Snowberg et al. (2013) suggest

that prediction markets can offer forecasts with greater accuracy than traditional methods.

Using polling data, data on economic fundamentals, and asset prices from political prediction

markets for the 2024 U.S. Presidential Election, we construct a joint distribution of election

outcomes in all states conditional on real-time polls and asset prices. To our knowledge, this is

the first formal approach of its kind, representing the paper’s main contribution.

Our estimates permit us to answer commonly asked questions in election forecasting. We

formally group states into electorally similar clusters without relying on a prior model of similarity

driven by, e.g., demographics. We identify pivotal states, i.e., states in which a victory is most

likely to increase a candidate’s overall odds of winning. Our estimates are useful not just to

election observers, but also to candidates as they optimally allocate scarce campaign resources

and to election night analysts and traders, as they continually update their forecasts as results

3Two prominent examples are FiveThirtyEight and the Princeton Election Consortium.
4See Salmon (2009) for a non-technical overview.
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come in.

We set up the problem using state space representation. Each state’s voter preferences are

a latent variable that fluctuates stochastically around a state fixed effect. The fluctuations are

persistent, respond to observable fundamental shocks (e.g., state of the economy), as well as to

“political” shocks, that is, shocks to voter preferences that are orthogonal to fundamentals. Both

fundamental and political shocks can be correlated across states. Pollsters observe and report each

state’s voter preferences with error. The error is also persistent and potentially correlated across

states, making it a second latent state variable. The poll results, observable by the econometrician,

are a sum of the two. With M + 2 latent variables (for M fundamentals) and M + 1 observable,

identification is not possible absent additional data.

These data are provided by political prediction markets, which allow investors to bet on the

outcome of each state’s election. An investor can buy or sell an exchange-traded contract that pays

out $1 after and if candidate A wins a given election. The contracts need not be held to maturity.

Under standard conditions, the market-clearing price on a given day before the election can then be

interpreted as the marginal investor’s risk-neutral probability of candidate A winning the election

conditional on all information available to investors as of that date (Wolfers and Zitzewitz, 2006).

This information contains polls and fundamentals, observable by the econometrician, but also

many other variables that drive fluctuations in voter preferences. This means that changes in the

price of this contract can shed additional light on changes in voter preferences beyond that which

is contained in polls.

We solve for each state’s contract price as a (nonlinear) function of the state variables and use

it as an additional measurement equation. This enables us to estimate the parameters governing

state dynamics as well as the values of the latent variables.

We use the estimated panel of voter preference across time and states to identify comovement

patterns. The first two principal components of the panel account for 94.2% of the variation. The

first principal component captures the overall trend in voter preferences towards the Democratic

candidate. The second principal component has a down-up-down pattern, with reversals occurring

around the times of key news events in the campaign, including the change in the Democratic

candidate.
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The states’ loadings on the first two principal components capture relevant cross-sectional

variation. Distances between states in the space formed by the first two principal components

provide a measure of similarity. Given that the only inputs into our model are polls, fundamentals,

and prediction market prices, this measure of similarity is driven entirely by 2024 data. We find

two partially overlapping clusters that include the majority of competitive states. The first cluster

includes the three “Rust Belt” states of Pennsylvania, Wisconsin, and Michigan, while the second

includes three “Sun Belt” states of Arizona, Georgia, and Nevada, providing contemporaneous

empirical validation to these popularly cited groupings. These clusters are similar in their response

to the change in the Democratic candidate, but differ in their exposure to the overall trend

towards the Democratic candidate. Other states have individually distinct patterns, including

North Carolina, which is often grouped – erroneously, in our model’s view – with the Sun Belt

states.

The informative and intuitive patterns we uncover would not be revealed by a PCA performed

on polls directly. Polling data is missing for some states for large parts of the sample, and the

noisiness of the data would render it impossible to decompose comovement into two distinct

components. Incorporating prediction market data in our analysis and using it to estimate the

latent voter preferences is integral to uncovering the two-component patterns described above.

We use the estimated dynamics to simulate the election outcome in each state. These outcomes

are significantly correlated, which we quantify by comparing the probability of a candidate winning

one state conditional on winning another and contrasting it with the unconditional probability of

winning that state. The magnitude of the update depends both on how surprising the win is, but

also on how central (in PCA loading space) the won state is, and therefore how correlated other

states are to it. For example, as of October 27, while the Democratic candidate Kamala Harris is

equally likely to win Arizona as she is to win Georgia (approximately 5-7%), a win in Arizona – a

more central state – raises her probability of winning the key battleground state of Pennsylvania

from 23% to 98%, while a win Georgia raises it only to 88%.

Finally, we aggregate the state-level forecasts into a national election forecast and contrast

the result with a counter-factual, in which individual state win probabilities are the same as in

the baseline but the cross-sectional correlations are set to zero. Our results show the Republican
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candidate Donald Trump to be favored to win the election, with a probability of 72.6%. Be-

cause correlations increase the dispersion of outcomes, failing to take them into account would

substantially raise Trump’s odds of victory to 90%.

A win in a given state raises a candidate’s probability of winning the overall election both

because receiving that state’s electoral votes brings the candidate closer to the majority and also

because the win in that state presages better electoral performance in other, correlated, states.

We quantify the magnitude of the latter and show that it is substantial. We also use it to identify

how “pivotal” each state is, i.e., how much a win in that state would increase either candidate’s

overall odds of winning. We find Pennsylvania to be the most pivotal state both because of its

large number of electoral votes and because of its central position in the PC loading space. This

result is consistent with the popular narrative that Pennsylvania is the most important state in

the 2024 election. Somewhat surprisingly, a similarly large closely-contested state of Michigan is

one of the least pivotal ones, because of its comparatively lower centrality.

Our paper contributes to the existing literature on time-series econometrics, political forecast-

ing, and election prediction markets, building on foundational works in these areas.

Methodologically, we build on advances in state-space modeling, as outlined in Durbin and

Koopman (2001), and Bayesian forecasting techniques discussed in West and Harrison (2006) and

Del Negro and Schorfheide (2011). Additionally, we draw on Elliott and Timmermann (2013),

which offers a comprehensive overview of forecasting methods used across macroeconomics and

finance.

We contribute to the literature on election forecasting, which has seen contributions from a

range of disciplines. Economists have focused on the role of economic variables for explaining

election results in-sample and predicting them out-of-sample. Fair (1996) summarizes prominent

examples, while Fair (2011) provides an updated and non-technical review of the forecasting

literature. Prominent recent work connects broad macroeconomic trends such as globalization and

risk appetites to election outcomes (see Autor et al., 2020, Pástor and Veronesi, 2020, and Pástor

and Veronesi, 2021). The political science work on election forecasting is extensive. Its origins

are reviewed by Lewis-Beck (2005). Prominent 21st century examples of U.S. presidential election

forecasting include Abramowitz (2004) and Jennings et al. (2020). Many advances in election
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forecasting occurred outside the academia. Silver (2012) reflects on the evolution of election

forecasting, emphasizing the limitations of polling data and the advancements in predictive models

over time.

Several studies examine political prediction markets. Snowberg et al. (2007) and Leigh and

Wolfers (2006) examine prediction markets during the 2004 election in the U.S. and Australia,

respectively. However, markets for outcomes in individual states have developed only recently,

and we believe our paper is the first to use them for forecasting. Calvo et al. (2024) demonstrates

that demographic trends fail to improve U.S. election forecasts, even with perfect knowledge of

future shifts, which reinforces the value of focusing on alternative predictive factors like polling

data and market prices, as we do in our model.

Lastly, our comovement estimates allow us to propose our own forecasting model. There

are several contemporaneous models of the 2024 U.S. presidential election that have received

considerable popular attention, e.g., The Economist (2024). FiveThirtyEight (2024) carries the

brand name of Nate Silver’s models for 2008-2020 elections, though Silver is no longer connected

with the company. He maintains his own forecast at Silver (2024). We rely on both of these

websites for poll aggregation, but our model is distinct in that it uses prediction market data to

infer cross-sectional correlations.

In sum, we contribute to this literature by proposing a novel framework that integrates polling

data, economic fundamentals, and prediction market prices to capture the dynamics of voter pref-

erences across states, thereby enhancing political forecasting methodologies. This comprehensive

approach offers valuable guidance for stakeholders in the upcoming U.S. presidential election,

potentially improving upon current practices in both academia and the field.

The rest of the paper is organized as follows. Section 2 describes the data sources and the

construction of our model’s inputs. Section 3 explains the econometric framework. Section 4

presents the results, and Section 5 concludes.
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2 Data

There are several types of data we need for this exercise. To estimate the model, we need to

combine polling data with prediction market prices and data on fundamentals. Since we perform

the exercise in real-time during the 2024 election campaign, our goal is to construct a state day

panel for each variable.

A particular difficulty of working with 2024 election data is the unprecedented decision by

incumbent President and Democratic nominee Joe Biden to drop out of the race and endorse

his Vice President Kamala Harris instead. Essentially overnight, Harris emerged as the de facto

Democratic nominee in place of Biden, and the contest between Biden and former President

Donald Trump became a Harris-Trump race instead.

We address this by taking a party-level view of the race. Instead of considering individual

candidates separately, we write our model in terms of voter preferences between a Democrat

and a Republican. In this context, the overnight replacement of Biden with Harris shows up as

(potentially large) shock to voter preferences for the Democratic candidate.

Polling data poses a particular challenge. Multiple polls may be released on the same day

by different pollsters with different methodologies or samples. Some polls will include only the

Democrat and Republican candidates, one of whom is overwhelmingly likely to win in each state,

while others include third-party candidates as well. Pollsters may construct a sample of all adults,

or all registered voters, or all likely voters, which is a subset of registered voters assessed likely to

vote based on a self-report. On other days, there may not be any polls released. To avoid dealing

with all the methodological issues involved in constructing an appropriate polling average, we use

averages constructed by polling aggregators. Our main data source is FiveThirtyEight, a quanti-

tative journalism and political forecasting website owned and operated by ABC News. It provides

a daily polling average for each state starting in about March 2024. To address FiveThirtyEight’s

limited data availability immediately after Harris replaced Biden as Democratic nominee, we aug-

ment the data with polling averages from the Silver Bulletin, authored by Nate Silver, the founder

and former head of FiveThirtyEight now operating independently. For each state-day, we define

voter preferences as the difference between the polling average for the Democratic candidate and
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Table 1: Summary Statistics

2020 Results Prediction Market Prices Polling Averages
(Dem-Rep) N Start End Mean Std N Start End Mean Std

Arizona 0.30 233 3/07 10/25 39.5 6.5 238 3/01 10/24 -3.2 2.1
Florida -3.36 221 3/19 10/25 11.3 4.1 191 4/18 10/25 -7.4 2.5
Georgia 0.23 233 3/07 10/25 37.1 6.0 238 3/01 10/24 -3.9 2.5
Michigan 2.78 233 3/07 10/25 53.2 6.2 239 3/01 10/25 -0.5 2.3
Minnesota 7.12 221 3/19 10/25 83.8 8.3 144 5/14 10/25 5.1 2.7
Nevada 2.39 233 3/07 10/25 44.5 9.8 239 3/01 10/25 -3.2 3.2
North Carolina -1.34 232 3/08 10/25 30.3 7.8 239 3/01 10/25 -4.2 2.9
Pennsylvania 1.16 234 3/06 10/25 49.8 5.2 239 3/01 10/25 -0.9 1.7
Virginia 10.11 212 3/28 10/25 82.9 6.3 107 7/11 10/25 5.6 2.2
Wisconsin 0.63 233 3/07 10/25 51.1 4.9 238 3/01 10/24 -0.2 2.0

Notes: Our main data source is FiveThirtyEight, a quantitative journalism and political forecasting website owned
and operated by ABC News. To address FiveThirtyEight’s limited data availability immediately after Harris
replaced Biden as Democratic nominee, we augment the data with polling averages from the Silver Bulletin,
authored by Nate Silver. Political prediction market prices, quoted in cents, are taken from Polymarket.

the polling average for the Republican candidate.

Political prediction market prices are taken at daily frequency from Polymarket. Polymarket

is a platform for hosting prediction markets, and has the largest notional amounts outstanding

of contracts on the U.S. Presidential election. For example, the market for the ultimate winner

of the overall election has a value $270 million. We obtain daily end-of-day prices of contracts

paying $1 if the Democratic candidate wins a given state for each traded state.

Many states are unlikely to be competitive. Past election results, current polls, and current

prediction market prices all suggest, for example, that the Democrat candidate will almost cer-

tainly win California, while the Republican candidate will win Kansas. Markets for these states

are not particularly liquid. And even if they were, their prices are not sensitive to changes in

voter preference. For example, if Kansas’ voters shift from preferring Republicans by 30 per-

cent to preferring them by only 25, a Democrat’s chance of winning the state will increase only

insignificantly.

Such states are also polled less frequently, making polling averages more likely to be stale. As

a result, we focus our analysis on the 10 “battleground,” or most competitive, states, defined as

Arizona, Florida, Georgia, Michigan, Minnesota, Nevada, North Carolina, Pennsylvania, Virginia,

9



Figure 1: Polling averages and prediction market prices
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Notes: Our main data source is FiveThirtyEight, a quantitative journalism and political forecasting website owned
and operated by ABC News. To address FiveThirtyEight’s limited data availability immediately after Harris
replaced Biden as Democratic nominee, we augment the data with polling averages from the Silver Bulletin,
authored by Nate Silver. Political prediction market prices are taken from Polymarket.

Wisconsin, respectively. Table 1 presents summary statistics and Figure 1 plots the time-series of

polling averages and prediction market prices and reports the date ranges for which the data is

available. Figure 1 shows extensive missing data and notable discrepancies between polling aver-

ages and prediction market prices, particularly during April and May. Although our estimation

method can handle missing observations, we aim to avoid the impact of this initially imperfect

data on our inferences. Therefore, we restrict our estimation sample to the period from June 1,

2024, through the most recent data available as of October 25, 2024.

Finally, we consider three series measuring economic fundamentals, with our choice restricted

by the requirement that the data be available at daily frequency. We obtain the Aruoba-Diebold-

Scotti Business Conditions Index from the Philadelphia Fed, the level of the S&P 500 stock index

and the Treasury yield spread between the 10-year and 3-month rates from the St. Louis Fed

FRED database. All of these are national-level variables, affecting voter preferences in all states,

potentially with their own beta. Because of data availability, we do not consider any state-specific

fundamentals series.
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3 Econometric Framework

We define di,t = Demi,t−Repi,t as the net voter preference (“NVP”) for the Democrat presidential

candidate in state i ∈ {1, ..., N} observed at time t during an election held at time T . The final

election outcome is represented by di,T , where di,T > 0 signifies a victory for the Democratic

presidential candidate in state i. We consolidate the dimensions of two polls into a single measure

representing the net margin for the Democratic presidential candidate. This measure can be easily

negated to derive the net margin for the Republican presidential candidate.

3.1 Democratic candidate’s net percent margin dynamics

The poll-based estimate of the net percent margin, doi,t, is specified as


do1,t
...

doN,t

 =


d1,t
...

dN,t

+


νd,1,t

...

νd,N,t

 , (1)


νd,1,t

...

νd,N,t

 =


µνd,1

...

µνd,N

+


ρνd,1 . . . 0

...
. . .

...

0 . . . ρνd,N



νd,1,t−1

...

νd,N,t−1

+


εd,1,t

...

εd,N,t

 ,

where νd,i,t represents measurement errors that are not mean-zero and include correlated shocks

[εd,1,t, ..., εd,N,t]
′ = εd,t ∼ N(0,Σεd). The dynamics of the true margin are as follows


d1,t
...

dN,t

 =


ρd,1 . . . 0

...
. . .

...

0 . . . ρd,N



d1,t−1

...

dN,t−1

+


α1

...

αN

+


β′1
...

β′N

�

f1,t
...

fN,t

+


u1,t

...

uN,t

 , (2)

where � denotes element-wise multiplication, fi,t is a vector of fundamentals, potentially includ-

ing state-specific factors, and the correlated shocks affecting the true polls are represented by

[u1,t, ..., uN,t]
′ = ut ∼ N(0,Σu).
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3.2 Dynamics of fundamentals

The law of motion of the vector of (de-meaned) fundamentals fi,t follows

fi,t = ρf,ifi,t−1 + wi,t, wi,t ∼ N(0,Σw,i). (3)

We assume that these fundamentals are observable.

3.3 Prediction market asset price dynamics

An investor would pay poi,t for a contract that pays her 1 if the Democrat wins state i and 0

otherwise. We posit that

poi,t = Φ

(
λp + Φ−1(pi,t) + εp,i,t

)
, [εp,1,t, ..., εp,N,t]

′ = εp,t ∼ N(0,Σεp), (4)

where Φ(·) is the cdf of the standard normal distribution and pi,t denotes the true probability of

a Democratic presidential candidate’s victory described in (5) below.5 In essence, we assume that

prices are observed with a bias—uniform across all states—and measurement errors that may be

correlated across states. Specifically, λp represents a persistent bias that remains consistent across

all states over the estimation sample, while εp,i,t captures biases that may be correlated across

states but are transient.6

In the absence of λp and εp,i,t, the observed price accurately reflects the true probability of a

win. Wolfers and Zitzewitz (2006) argue that prediction market prices can be interpreted as the

beliefs of the marginal trader about the probability of an event happening, under the assumption

that markets are efficient and traders are risk-neutral.

Denote the information set at time t as It. The probability that the Democratic presidential

5For a similar inverse cdf transformation applied to the data, refer to Song and Tang (2023).
6We do not rule out the possibility that this constant term includes a risk premium component. In such a case,

it is straightforward to deduce that if λp > 0, the observed price poi,t exceeds the true price pi,t, implying that
investors’ marginal utility is higher when the Democrat wins. This suggests that the risk premium is negative, and
thus, the contract can be interpreted as a hedge. Conversely, if λp ≤ 0, the interpretation is reversed.
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candidate wins is

pi,t ≡ P (di,T > 0|It), (5)

= P

(
uei,t+(T−t) + β′iw

e
i,t+(T−t) > −(ρ

(T−t)
d,i di,t + αi

(T−t)−1∑
j=0

ρjd,i + β′if
e
i,t)|It

)
,

= Φ

(
ρ
(T−t)
d,i di,t + αi

∑(T−t)−1
j=0 ρjd,i + β′if

e
i,t

(σ2
ue,i + β′iσ

2
we,iβi)

1/2

)
,

which is derived based on (6) and (7), as provided below.

First, we iterate the dynamics of the fundamentals in (3) forward to determine the true margin

at time T for state i, based on (2), as follows:

di,t+(T−t) = ρ
(T−t)
d,i di,t + αi

(T−t)−1∑
j=0

ρjd,i + β′i

(T−t)−1∑
j=0

ρjd,iρ
(T−t−j)
f,i fi,t, (6)

+ β′i

(T−t)−1∑
j=0

ρjd,i

(T−t−j)−1∑
k=0

ρkf,iwi,t+(T−t−j)−k +

(T−t)−1∑
j=0

ρjd,iui,t+(T−t)−j.

The exposition in (5) relies on the following simplifying notations which are based on (6):

f ei,t =

(T−t)−1∑
j=0

ρjd,iρ
(T−t−j)
f,i fi,t, (7)

uei,t+(T−t) =

(T−t)−1∑
j=0

ρjd,iui,t+(T−t)−j,

wei,t+(T−t) =

(T−t)−1∑
j=0

ρjd,i

(T−t−j)−1∑
k=0

ρkf,iwi,t+(T−t−j)−k,

σ2
ue,i ≡ var(uei,t+(T−t)) =

(T−t)−1∑
j=0

ρjd,i(e
′
iΣuei)(ρ

j
d,i)
′,

σ2
we,i ≡ var(wei,t+(T−t)) =

(T−t)−1∑
j=0

( j∑
k=0

ρj−kd Iρkf,i

)
Σw,i

( j∑
k=0

ρj−kd Iρkf,i

)′
,

where ei is a selection vector with a 1 in the ith position and 0s in all other positions.
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3.4 Discussion

It is important to recognize from (1) that the poll-based estimate dot of the net voter preference

alone cannot identify its mean level α nor the shocks ut influencing the true margins dt, due to

the presence of potentially biased measurement errors νd,t.

This is precisely where asset prices pot in (4) become relevant, as they are assumed to be

uncorrelated with the poll measurement errors νd,t. Even though asset prices may also exhibit

bias, represented by λp, this bias is assumed to be identical across states. As a result, asset prices

aid in the identification of both the true margin level α and the shocks ut affecting the true margin.

Since the dynamics of fundamentals are unaffected by the polls or asset prices, we can estimate

(3) separately from the joint estimation of polls and asset prices.

In summary, our goal is to understand the dynamics of the true net voter preference through

the joint estimation of observed polls and asset prices. In the following section, we facilitate this

process by introducing the state-space representation of our framework.

3.5 State-space representation

It is crucial to differentiate between the end of the estimation sample, TE < T , and the final

election date, T . For t ∈ {1, . . . , TE}, we cast the model described in (1), (2), (4), and (5) into a

state-space representation.

 dot

Φ−1(pot )

 =

 0

δp,t

+

 I I 0 0

γp,t 0 0 I




dt

νd,t

ut

εp,t

 , (8)


dt

νd,t

ut

εp,t

 =


δd,t

µνd

0

0

+


ρd 0 0 0

0 ρνd 0 0

0 0 0 0

0 0 0 0




dt−1

νd,t−1

ut−1

εp,t−1

+


I 0 0

0 I 0

I 0 0

0 0 I




ut

εd,t

εp,t

 ,
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where

dot =


do1,t

...

doN,t

 ,Φ−1(pot ) =


Φ−1(po1,t)

...

Φ−1(poN,t)

 , α =


α1

...

αN

 , β′ =

β′1
...

β′N

 , ft =


f1,t

...

fN,t

 , µνd =


µνd,1

...

µνd,N



δp,t =


λp +

α1
∑(T−t)−1

j=0 ρjd,1+β
′
1f

e
1,t

(σ2
ue,1+β

′
1σ

2
we,1β1)

1/2

...

λp +
αN

∑(T−t)−1
j=0 ρjd,N+β′Nf

e
N,t

(σ2
ue,N+β′Nσ

2
we,NβN )1/2

 , γp,t =


ρ
(T−t)
d,1

(σ2
ue,1+β

′
1σ

2
we,1β1)

1/2 . . . 0

...
. . .

...

0 . . .
ρ
(T−t)
d,N

(σ2
ue,N+β′Nσ

2
we,NβN )1/2

 ,

δd,t = α + β′ � ft, and ρd and ρνd denote the persistence matrices, which are assumed to be

diagonal in (1) and (2), respectively.

3.6 Gibbs sampler

The state-space representation (8) can be expressed generically as follows:

yt = Λ0,t + Λ1,tst, (9)

st = Γ0,t + Γ1st−1 + Ωεs,t, εs,t ∼ N(0,Σs), t ∈ {1, ..., TE}.

We collect parameters in

Θf = {ρf ,Σw}, Θd = {ρd, α, β,Σu}, Θν = {µνd , ρνd ,Σεd}, Θp = {λp,Σεp}. (10)

Estimation sample

We set N = 10 as shown in Table 1, with the estimation sample spanning from June 1 to October

25, 2024. This results in a panel with a time series length of TE = 145 and cross-sectional units of

2N = 20, incorporating both polls and prices. Given that the election date is November 5, 2024,

we set T = TE + 11.
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Parameter restrictions

We seek to enhance the precision of our inference. To further reduce the number of unknown

parameters in the model, we assume that the two diagonal persistence matrices, ρd and ρνd , each

contain a single scalar persistence parameter that remains consistent across all states.

Our estimation sample is relatively short, which complicates the task of identifying both the

true margin level α and the measurement error component µνd . This challenge is particularly

acute when ρd and ρνd are close to a unit root. Additionally, we aim to determine the bias in

prediction market prices, denoted by λp. To address these challenges, we initially assume µνd is

zero, based on the assumption that its true mean is zero, even though it may exhibit non-zero

values intermittently in short samples due to ρνd being near one. Under this assumption, we

can jointly identify λp from both poll estimates and prices, given that λp is a scalar and remains

constant across states.

As explained earlier, Θf can be estimated independently based on the observed fTE . Hence, we

treat fTE and {Θf}(j), where j ∈ {1, ..., Nsim}, as given within this Gibbs sampler. For simplicity,

we exclude state-specific fundamental factors and use national ones instead. Therefore, under

this assumption, any variation in the true margin across states can be entirely attributed to their

loadings βi, along with αi and ui,t, as demonstrated in (2).

We estimate Θf using daily data from March 1, 2024 to October 18, 2024, incorporating the

ADS index from Aruoba et al. (2009) (available from the Federal Reserve Bank of Philadelphia),

the logarithmic S&P 500 index, and the Treasury yield spread between the 10-year and 3-month

rates, all rescaled by a factor of 100, 10, and 100 for comparability, respectively.

We treat Θf as known in the Gibbs sampler used to estimate (8). We observe that macro

fundamentals fTE are available only on business days, while polls and prediction market prices are

accessible on non-business days as well. To make the most of the available data, we forward-fill

macro fundamentals on non-business days (e.g., setting Saturday and Sunday values to those of

Friday). Next, we de-mean fTE to match the estimation sample used in the Gibbs sampler.

In summary, the total number of unknowns—equivalent to the number of parameters that

need to be estimated—is 1 + 4N +N(N − 1) for Θd, 1 +N(N − 1) for Θν , and 1 +N(N − 1) for

Θp. This amounts to a total of 3N2 +N + 3 parameters, which equals 313 when N = 10.
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Priors

Due to the large number of parameters we are estimating, the importance of setting appropriate

priors is crucial. To ensure that the estimation results are not unduly influenced by our prior

choices, we aim to use loose priors whenever possible. However, there are instances where we

must impose tighter priors, which we detail below. Even in cases where we use loose priors, we

still need to provide informative priors, as described further below.

Priors for the covariance matrices, which are crucial to our study, are set loosely while ac-

counting for the fact that the magnitude of covariance for asset price measurement errors is

significantly larger. To provide perspective, the variance of the inverse CDF level of observed

asset prices, Φ−1(pot ), is at least 100 times greater than that of the observed poll values, dot .

Although we apply relatively loose priors overall, we impose more informative and restrictive

priors specifically for ρd and α, which merit further discussion. From the expression for the

probability in (5), it is evident that as T − t increases, ρ
(T−t)
d,i approaches zero, leading to the

loss of the relationship between the probability pi,t and the true margin di,t. Given that we are

working with daily polls and asset prices, we set priors for ρd,i to be centered around 0.99, which

implies a half-life of approximately 70 days, with a variance of 0.1. This necessitates a stringent

imposition, as α should decrease with increasing persistence. Given that a tight near-unit root

prior is imposed for ρd,i, it follows that α must be tightly shrunk toward zero. The true margin

level, α, is centered around zero with a variance of 0.0001.

Finally, the prior for the bias term in the (transformed) asset prices is normally distributed

with a mean of zero and a variance of 1. This prior accommodates both positive and negative

values of significant magnitude, suggesting an equal likelihood of interpreting the contract as

either a hedge or a risk. This is an important parameter with significant implications for asset

pricing; therefore, we impose a loose prior to allow the data to drive the results.

Summary of procedures

We use the Gibbs sampler to estimate the model unknowns that are summarized in (9) and (10).

For brevity, a detailed description is provided in the appendix. We provide a brief summary of
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the Gibbs sampler here. For the jth iteration,

• Run Kalman smoother to generate {sTE}(j) conditional on {fTE ,Θf ,Θd,Θν ,Θp}(j−1): This

is explained in Appendix A.3.

• Obtain posterior estimates of {Θd,Θν ,Θp}(j) from the MNIW conditional on {sTE}(j) and

fTE : This is explained in Section A.4. In particular, coefficients subject to restrictions, such

as those in Θν and Θp are drawn based on Section A.4.1

4 Results

We examine smoothed estimates of the latent variables for each state, potentially influenced by

λp (a constant bias) and εp.t (transient, possibly correlated biases). Transient biases across states

are absorbed into εp,t. From June 1 to October 25, however, λp is statistically indistinguishable

from zero, indicating no evidence of a consistent bias across all ten states.7

Figure 2 compares the estimated net voter preferences (“NVP”), denoted as dt, with the

observed poll estimates, dot , as described in (1). After accounting for measurement errors, we find

that voters in battleground states are more undecided and less volatile in their preference than

polling averages suggest, indicating a close race, and one that was less upended by the change in

the Democratic candidate than implied by polls. Except for Minnesota and Virginia, which lean

Democratic, the 90% credible intervals either include zero or are close to zero, highlighting the

competitive nature of the presidential election.

Our main research question is to identify the comovement patterns of voter preferences across

states. The model allows for two sources of comovement. First, the βi in (2) capture the co-

movement driven by macroeconomic fundamentals. Second, the ut shocks in (2) capture the

comovement driven by correlated political shocks.

7Expanding the sample to include April and May, when polling averages and prediction market prices diverged
notably, λp becomes significantly positive. If λp reflects a risk premium, this result suggests investors may pay
above fair probability, indicating a higher marginal utility in scenarios where the Democrat wins and suggesting
a negative risk premium that positions the contract as a hedge. These outcomes imply time variation in the bias
term, which could be further explored with distinct subsamples—an approach not pursued in this version.

18



Figure 2: Estimated net voter preferences versus observed poll estimates
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Notes: We provide posterior median-smoothed estimates of dt accompanied by 90% and 60% credible intervals.
We overlay with observed poll estimates dot . The relationship between the model-implied dt and the observed one
dot is outlined in (1).

Our estimates attribute a low weight to macroeconomic fundamentals in explaining the co-

movement of voter preferences. The posterior median of βi in (2) is close to zero for all states, and

the 60% credible intervals include zero for all states. This suggests that the comovement of voter

preferences across states is largely driven by unobserved political shocks, ut, that are orthogonal

to macroeconomic changes.

4.1 Principal component analysis of comovement patterns

To uncover the comovement patterns, we perform a principal component analysis (PCA) on

the estimated paths of di,t. The early part of the sample exhibits a high degree of estimation

uncertainty and is most influenced by priors on αi. To avoid our results being overly influenced

by the priors, we focus on the period from July 1 onward, estimating the principal components

and loadings for each simulated posterior panel of di,t. PCA decomposition is not unique. To

aid interpretability, for each panel we flip the signs of the PCs and loadings to ensure that most

states have positive loadings.

The right panel of Figure 3 shows the estimates of the first two principal components (PCs),

which account for 66% and 27.8% of the variability in dt across the ten states (N = 10), re-
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Figure 3: Principal components of net voter preferences dt

First two PCs Loadings on first two PCs

Notes: The left panel plots posterior median-smoothed estimates of the first two principal components (PCs),
along with 60% credible intervals. The right panel displays the PC loadings, where the x-coordinate indicate the
state’s median loading on PC1 and the y-coordinate on PC2. The shaded regions around each point represent the
60% credible regions.

spectively. No other component accounts for more than 2%. The estimated PCs have intuitive

interpretations in the context of the 2024 U.S. presidential election. The first PC (“trend”) cap-

tures the overall trend in voter preferences towards the Democratic candidate. This trend has

been consistently increasing, with a moderate flattening in early to mid August. Even though the

macroeconomic variables that we chose had little explanatory power, this trend may still be driven

by fundamentals and their perception, particularly the abating inflation that voters consistently

cited as a top concern. The change in slope occurring in August follows the weaker-than-expected

July jobs report released on August 5. In its aftermath, the media devoted considerable coverage

to the cooling labor market and a likely Fed rate cut, which may have influenced voter preferences.

The second PC features more variation. It decreases until mid-July, then increases sharply

until mid-August, and then decreases again, with reversals being sharp and pronounced. The

timing of the sharp July reversal, close to the time when President Biden announced that he

would not seek re-election and endorsed Vice President Kamala Harris, invites an interpretation

of PC2 as capturing the personal popularity of the Democratic candidate, prompting us to label

PC2 as “Popularity”. The second reversal comes during a period of heightened media coverage,
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occurring shortly after Harris announced her selection of Gov. Tim Walz as her running mate,

days before the start of the Democratic National Convention, and around the same time as the

release of her economic policy proposals.

The right panel plots the regression coefficients of each state’s estimated di,t value on Trend

(x-axis) and Popularity (y-axis) principal components. The points represent median estimates,

while the shaded regions around them represent the 60% credible regions. The visualization of

PC loadings reveals clusters of closely related states and provides a measure of state similarity

that is not driven by a priori assumptions about regional similarities or demographic models of

voter preferences.

Consider first the partially overlapping cluster of six states with moderately positive Popularity

loadings. It includes the states where the election outcome is most uncertain – the three “Rust

Belt” states of Pennsylvania, Wisconsin, and Michigan, along with some “Sun Belt” states of

Arizona, Georgia, and Nevada. These six states have similar loadings on Popularity (PC2).

In other words, voters in these states were like-minded in their response to the change in the

Democratic candidate. One slight exception is Michigan, whose exposure to Popularity is slightly

higher than the other five states.

Where these states do differ is in their exposure to Trend (PC1). The three “Rust Belt”

states have lower loadings than the three “Sun Belt” states, meaning that the they have been less

affected by the overall trend of the election towards the Democratic candidate.

A fourth state commonly included in the “Sun Belt” narrative is North Carolina. However,

our estimation shows it to be somewhat distinct from the other three of Arizona, Georgia, and

Nevada. First, North Carolina essentially has no exposure to Popularity, meaning that dynamics

associated with the personal popularity of the Democratic candidate have not been a driver of

voter preferences in the state. Second, North Carolina has a higher exposure to Trend than the

other three states, meaning that the overall trend towards the Democratic candidate has been

more pronounced in North Carolina.

Finally, the three outliers constitute the three states in our analysis where the election is least

competitive. Democrats have pronounced leads in Virginia and Minnesota, while Republicans

are likely to win Florida. But not only do these three states have diverging preferences, the
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dynamics of these preferences are also distinct. Virginia and Minnesota responded strongly to the

personal popularity dynamics captured by PC2, while exhibiting none of the overall drift towards

Democrats (or, in Virginia’s case, potentially even a contrarian pattern). In contrast, Florida

appears to be slightly contrarian with respect to PC2, while also exhibiting a strong overall trend

towards the Democratic candidate (albeit from a strongly Republican starting point).

Overall, our estimation effectively uncovers important comovement patterns that reflect fun-

damental voter preferences, rather than being driven by common shocks to polling errors.

These patterns would not be revealed by PCA performed on polls directly. First, polling data

is missing for some states for large parts of the sample. State polls are not conducted frequently

enough early in the campaign. Second, their noisiness would render it impossible to decompose

comovement into two distinct components – a PCA on forward-filled polling data produces a PC1

that explains 90% of the variation, while subsequent components are essentially noise, all in the

low single digits and scattered across states.

Incorporating prediction market data in our analysis and using it to estimate the latent voter

preferences is integral to uncovering the two-component patterns described above.

4.2 Simulating possible election outcomes

What are the practical implications of the comovement patterns identified in the previous section?

To answer this question, we consider a simulated distribution of possible election outcomes.

The Democratic (Republican) candidate wins a given state when the value of di,T on election

day T is positive (negative). The common factor structure in di,t implies that the outcomes in

different states are correlated, and that the states of the world in which, e.g., the Democrat wins in

Pennsylvania are also likely to be the states of the world in which the Democrat wins in Wisconsin.

The goal of our simulation is to assess quantitatively how the state win probabilities – and

ultimately, the overall election win probabilities – change conditional on a given state’s election

outcome. While our simulation produces an unconditional forecast, we are mainly interested in

this forecast as a baseline with which to compare the conditional forecasts.

Given our focus, we construct the simulation using the principal components estimated in the
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previous section. We can write the principal components rotation as:

di,t = d̄i +
10∑
j=1

ai,jxj,t

where d̄i indicate the time-series mean of di,t, xj,t as the j’th principal component, and ai,j denotes

the loading of state i on PC j. Our goal will be to simulate xj,T , i.e., the value of the principal

component j on election day T , and then map it to a distribution of di,T using the estimated

loadings.

In the previous section, we found that the first two principal components account for the vast

majority of the variation in di,t. To gauge the importance of comovement, we will consider the two

polar cases. First, we will model di,T as being entirely explained by the first two PCs, and later

we will contrast these results with a counter-factual in which di,T are cross-sectionally orthogonal.

Let Xt denote the 2 × 1 vector of the first two PCs at time t. Our goal is to construct the

conditional distribution of XT given a value of Xt on the last day in our sample. We assume

that Xt follows a random walk with innovation covariance given by the sample covariance Σ̂X =

Cov[Xt−Xt−1]. The choice to model Xt is a random walk as opposed to, say, a VAR, is motivated

by two observations. First, the plot of the first two PCs in Figure 3 shows that the PCs are highly

persistent and trending, suggesting that a stationary process would likely be misspecified. Second,

the martingale property of a random walk yields the simplest possible model for the average path of

the PCs, avoiding extrapolation from a relatively short sample over which the PCs are computed.

The conditional mean of XT given Xt is just Xt, and the conditional variance of XT given Xt

is (T − t)Σ̂X . Assuming the innovations are jointly normal, we can simulate the final PC values

by drawing from the multivariate normal distribution:

XT ∼ N (Xt, (T − t)Σ̂X).

To obtain the election outcome in a particular state i, we first construct the final restricted net
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Table 2: Democratic candidate state win probabilities

AZ FL GA MI MN NV NC PA VA WI

Unconditional 0.052 0.004 0.074 0.567 0.981 0.244 0.147 0.232 0.998 0.416
Arizona 1.000 0.064 0.975 1.000 1.000 1.000 0.932 0.983 1.000 1.000
Florida 0.805 1.000 0.976 0.927 1.000 1.000 1.000 0.610 1.000 0.951
Georgia 0.675 0.054 1.000 0.995 1.000 1.000 0.970 0.876 1.000 0.999
Michigan 0.091 0.007 0.130 1.000 1.000 0.407 0.232 0.409 1.000 0.733
Minnesota 0.053 0.004 0.076 0.579 1.000 0.249 0.149 0.237 1.000 0.424
Nevada 0.211 0.017 0.304 0.946 0.999 1.000 0.587 0.646 1.000 0.929
North Carolina 0.327 0.028 0.491 0.894 0.995 0.976 1.000 0.593 0.999 0.878
Pennsylvania 0.218 0.011 0.281 1.000 1.000 0.680 0.375 1.000 1.000 1.000
Virginia 0.052 0.004 0.075 0.568 0.982 0.245 0.147 0.232 1.000 0.417
Wisconsin 0.124 0.009 0.178 0.999 1.000 0.546 0.310 0.558 1.000 1.000

Notes: The top row reports the unconditional win probabilities for the Democratic candidate in each state (column).
The subsequent rows report the conditional win probabilities for the Democratic candidate in each state, given that
the Democratic candidate wins in a given state (row). Diagonal elements are 1.000 by definition. The probabilities
are computed from 10,000 simulations of the model.

voter preference d̃i,T :

d̃i,T = d̄i +
10∑
j=3

ai,jxj,T +
2∑
j=1

ai,jxj,T

and then define the binary election outcome as 1d̃i,T>0.
8

To construct the full simulation, we perform the above procedure 10,000 times with a fixed

seed for each draw from the posterior distribution of the model parameters. We then take the

median across parameter estimates to get a 10,000 element simulation of election outcomes in

each of the 10 modeled states.

Table 2 presents the results. The top row reports the unconditional win probabilities, i.e.,

E[1d̃iT>0]. for each state. These results are broadly consistent with the final values of prediction-

market prices in the data. Harris, the Democratic candidate, is a strong favorite in Minnesota and

Virginia, while the Trump, Republican candidate, is a strong favorite in Florida. The remaining

8The
∑10

j=3 ai,jxj,t term ensures that the starting value of the restricted NVP d̃i,t is equal to the unrestricted
value di,t.
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seven states are all competitive, with Harris doing best in Michigan and worst in Arizona. They

differ from the latest prediction market prices because the estimated model expects some mean

reversion to the 2020 election outcome, while the PC-based simulation, designed for maximum

transparency, does not.

The subsequent rows report the win probabilities of Harris in each state, conditional on her

winning the state labeled in the first column. If states were independent, these rows would just

repeat the top row values. However, the comovement patterns identified in the previous section

imply that knowing who won a given state changes expectations of who will win in other states.

For example, consider Pennsylvania. Unconditionally, Harris’s chances of winning there are 23.2%.

But if she wins Wisconsin, her chances of winning Pennsylvania increase to 55.8%. This change

is because the two states are similar in their loadings on Trend and Popularity loadings, as shown

in Figure 3.

Intuitively, a win in a state that the candidate was already expected to win does not change

the overall probabilities much. For instance, the probabilities of Harris winning a state conditional

on her winning Virginia do not differ from the unconditional probabilities. In contrast, a win in a

state where Harris is a clear underdog, like Florida, leads to a large update. The unlikely states

of the world that would need to materialize for her to win Florida would also make her a favorite,

or even a lock to win, in all other states.

But there is an additional dimension that drives heterogeneity in the magnitude of conditional

updates. Compare Nevada to Pennsylvania, both states that Harris has approximately a 1 in 4

chance of winning. A win in either state is relatively uninformative about her chances of winning in

states where she is strong favorite (Minnesota, Virginia) or a massive underdog (Florida). Wins

in either state boost Harris’s chances of winning Arizona and Georgia by approximately equal

amounts, but they are differentially informative about outcomes elsewhere. A win for Harris in

Pennsylvania essentially guarantees a win in Wisconsin and Michigan, while a win Nevada merely

makes it very likely. This is because, as shown in Figure 3, Pennsylvania is closer to Michigan

and Wisconsin in PC loading space than Nevada is. In contrast, a Harris win in Nevada raises

her chances of winning North Carolina, a neighbor in PC space if not geographically, from 14.7%

to 58.7%, making her favorite to win the Tar Heel state, while a win in Pennsylvania raises the
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probability only to 37.5%.

A win in a given state alters the overall election outcome. This happens for two reasons. First,

a win in a state increases the number of electoral votes the candidate has, making it more likely

that the candidate crosses the threshold of 270 needed to win the overall election. This would be

the case even if states were independent. Second, the analysis in this section shows that a win

in a state raises the conditional probabilities of winning other states, winning which would also

deliver electoral votes to the candidate.

To see how much role comovement plays in the conditional probabilities of overall election

outcomes, we aggregate our results. To start, we must take a stand on election outcomes in the 46

states and electoral districts outside of our analysis. Given the choices we made when constructing

the sample, these states have the least uncertainty about their eventual winner. Therefore, we

assign them either to the Democratic or to the Republican candidate in all simulations based

on their latest prediction market prices. If the price of the Harris contract is above 0.8, we

assume that she wins it with certainty, and if it is below 0.2, we assume that Trump wins it with

certainty. This yields a starting value of 203 electoral votes for Harris, which includes DC and a

congressional district in Nebraska where the state is otherwise won by Trump, and 189 for Trump,

which includes a congressional district in Maine, a state otherwise won by Harris.

We then compute the total number of electoral votes won by Harris as

203 +
10∑
i=1

1d̃i,T>0 × EVi

where EVi is the number of electoral votes assigned to state i. We repeat this calculation for each

simulation and then compute the fraction of simulations in which each of the candidates wins

at least 270 electoral votes. This fraction is the probability of the candidate winning the overall

election.

We compare two scenarios in Table 3. The first two columns represent the baseline scenario,

in which the simulated election outcomes in each state are entirely driven by the two common

factors identified earlier, and hence are correlated. The next two columns present an alternate

scenario, in which state outcomes are uncorrelated. To construct this counter-factual, we take
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Table 3: Overall election win probabilities

Baseline Uncorrelated
Harris Trump Harris Trump

Unconditional 0.274 0.726 0.102 0.898
Pennsylvania 1.000 0.945 0.362 0.977
Georgia 1.000 0.784 0.300 0.914
Arizona 1.000 0.765 0.216 0.904
Florida 1.000 0.729 0.769 0.901
Nevada 0.818 0.902 0.132 0.908
North Carolina 0.879 0.830 0.266 0.926
Wisconsin 0.658 1.000 0.184 0.957
Michigan 0.482 0.999 0.159 0.973
Minnesota 0.280 1.000 0.103 0.975
Virginia 0.275 1.000 0.102 0.983

Notes: The table reports overall election win probabilities for each candidate in two scenarios. The Baseline
(first two) columns aggregate the state-level results using the PC-based simulation, while the Uncorrelated (last
two) columns report the results for a counter-factual simulation in which every state’s marginal probabilities are
the same as in Baseline, but where realizations are uncorrelated. The top row reports the unconditional win
probabilities Harris and Trump, respectively. They add up to 1 by construction. The subsequent rows report the
conditional win probabilities for each candidate, given that candidate won in a given state (row). Because they
condition on different outcomes (a Harris win vs. a Trump win in the same state), they do not add up to 1. The
states are ordered by their “pivotalness,” i.e., the degree to which a win in that state alters the overall outcome.
The probabilities are computed from 10,000 simulations of the model.

the individual state win probabilities from the baseline model and simulate each state’s outcome

separately. In effect, each simulation is then a random draw from a binomial distribution with

heterogeneous probabilities.

By construction, the two scenarios produce identical numbers of average electoral votes for

each candidate. On average, Harris wins 248.6 votes and Trump wins 289.4. With 270 needed for

a majority, these means forecast a close election with Trump a more likely victor.

However, correlated state win probabilities predictably lead to a much more dispersed distri-

bution, with the standard deviation in the baseline case of 26.8 being almost double 14.6, its value

in the uncorrelated scenario.

A wider distribution yields closer win probabilities. Consider the results reported in Table 3.

The first row reports unconditional win probabilities for each of the two candidates under each

scenario. In the baseline case, Trump has a 72.6% chance of winning, making him favorite but
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allowing for a substantial – 27.4% – chance of a Harris victory. These probabilities are close to the

final value from Nate Silver’s FiveThirtyEight forecast in the 2016 election, which gave a Trump

victory – the realized outcome – a 28.6% chance of occurring. In the uncorrelated case, Trump

wins almost 9 out of 10 times, and the outcome appears much more certain.

Subsequent rows report aggregate win probabilities conditional on the given candidate winning

the given state. For example, in the baseline scenario, conditional on winning Nevada, Harris wins

the election 82% of the time. But if Trump wins Nevada, it is he who wins the election 90% of

the time.

Rather than order states alphabetically, we order them in decreasing order by their baseline

“pivotalness,” which is the sum of the two conditional probabilities for that state. Intuitively,

a state is most pivotal if winning it is sufficient to clinch the election. Such a state would have

a conditional probability of 1 for each candidate, and therefore a “pivotalness” of 2. The least

pivotal state would be one in which a win does not alter the unconditional probabilities at all,

leading to a “pivotalness” of 1. Of course, for this to occur in practice, not only would the state

outcomes need to be uncorrelated, the state would also need to award 0 electoral votes.

According to this measure, the most pivotal state is Pennsylvania. In our simulation, winning

it would be sufficient for Harris to win the overall election, while a Trump win there would give

him high odds – 89% – of doing the same. Pennsylvania is pivotal for three reasons. First, it

awards 19 electoral votes, a large number. That makes it fairly pivotal even in the uncorrelated

scenario, where this reason is the sole contributor. Second, it is close to many other states in

PC loading space as shown in Figure 3, making their outcomes highly correlated. Third, it is a

somewhat close state, so a win there leads to a large update in win probabilities for correlated

states.

The least pivotal states are the least competitive ones. A win in Virginia and Minnesota for

Harris is expected, so it causes only small revisions to overall win probabilities. Of course, were

the underdog candidate win in these states, the realization of that unlikely scenario would lead

to a large revision, but the fact that this only happens for one, not both candidates, keeps the

overall “pivotalness” measure low.

Perhaps surprisingly, the third least pivotal state is Michigan. At first glance, it seems similar
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to Pennsylvania, the most pivotal state. It also has a large number of electoral votes, 15, is

competitive, and is close to Pennsylvania in PC loading space. However, it is unusually favorable

to Harris and is more sensitive to the Popularity PC than all other competitive states, meaning

that a Harris win there does not lead to as large an update about her aggregate odds of winning

in other states as a Pennsylvania win does.

Overall, these results highlight the importance of modeling comovement for forecasting election

outcomes and identifying states that are most likely to determine the overall election result.

5 Conclusion

In this paper, we developed a time-series econometric model that integrates polling data, economic

fundamentals, and prediction market prices to estimate voter preferences across U.S. states for

the 2024 Presidential Election. Our framework allows for the identification of pivotal states and

electorally similar clusters, providing insights into how state-level election outcomes are correlated

and how they shape the national forecast. We demonstrate that failing to account for these

correlations results in meaningfully different predictions, and our model highlights the importance

of states like Pennsylvania as key battlegrounds.

A key advantage of our method is that it uses contemporaneous and forward-looking data,

which allows us to quantify the similarity of voter preferences across states in the current election

without taking a stand on the source of this similarity and without assuming that it persists across

election cycles.

While our results offer a robust tool for U.S. presidential election forecasting, there are im-

portant caveats. Prediction markets, while rich in information, may still reflect investor biases or

manipulation attempts, unrelated to voter behavior.9 Our model is robust to constant or highly

persistent biases across time and states, but we could not consistently identify voter preferences

if the biases vary. Our simulation exercises consider two polar cases, in which the dynamics of

9In October 2024, there have been media reports of unusually large trades in the Polymarket prediction market
for the overall election winner, whose price impact may be evidence of market manipulation. Our model only uses
data from the state prediction markets, not the national one. But if the alleged manipulation was sophisticated
enough to move state prices in a way consistent with the national market (overall election outcome) through the
lens of our model, our estimates would be affected.
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voter preferences are either perfectly explained by the two significant principal components with

no idiosyncratic shocks, or are entirely idiosyncratic. The true dynamics likely lie somewhere in

between. Finally, we found little explanatory power for three specific measures of macroeconomic

fundamentals, but other measures or their lags could be more informative. We think that all of

these offer promising opportunities for future work.
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Appendix

A Gibbs Sampler

We use the Gibbs sampler to estimate the model unknowns. We use the state-space representation

from Appendix A.1, with parameters reconfigured as described in Appendix A.2. For the jth

iteration,

• Run Kalman smoother to generate {dT , νTd , uT , εTp }(j) conditional on {fT ,Θf ,Θd,Θν ,Θp}(j−1):

This is explained in Appendix A.3.

• Obtain posterior estimates of {Θf ,Θd,Θν ,Θp}(j) from the MNIW conditional on {dT , νTd ,

uT , εTp }(j) and fT : This is explained in Section A.4. In particular, coefficients subject to

restrictions, such as those in Θν and Θp are drawn based on Section A.4.1

A.1 State-space representation

In the state-space representation of our model, the state-transition equation defines the law of

motion for the unobserved factors, while the measurement equation links the observable variables,

such as polls dot and transformed asset prices Φ−1(pot ), to the latent states. The representation is

as follows:

 dot

Φ−1(pot )

 =

 0

δp,t

+

 I I 0 0

γp,t 0 0 I




dt

νd,t

ut

εp,t

 , (A-1)


dt

νd,t

ut

εp,t

 =


δd,t

µνd

0

0

+


ρd 0 0 0

0 ρνd 0 0

0 0 0 0

0 0 0 0




dt−1

νd,t−1

ut−1

εp,t−1

+


I 0 0

0 I 0

I 0 0

0 0 I




ut

εd,t

εp,t

 ,
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where

dot =


do1,t
...

doN,t

 ,Φ−1(pot ) =


Φ−1(po1,t)

...

Φ−1(poN,t)

 , α =


α1

...

αN

 , β′ =

β′1
...

β′N

 , ft =


f1,t
...

fN,t

 , µνd =


µνd,1

...

µνd,N



σ2
ue,i =

(T−t)−1∑
j=0

ρjd,i(e
′
iΣuei)(ρ

j
d,i)
′, σ2

we,i =

(T−t)−1∑
j=0

( j∑
k=0

ρj−kd Iρkf,i

)
Σw,i

( j∑
k=0

ρj−kd Iρkf,i

)′
,

δp,t =


λp +

α1
∑(T−t)−1

j=0 ρjd,1+β
′
1f

e
1,t

(σ2
ue,1+β

′
1σ

2
we,1β1)

1/2

...

λp +
αN

∑(T−t)−1
j=0 ρjd,N+β′Nf

e
N,t

(σ2
ue,N+β′Nσ

2
we,NβN )1/2

 , γp,t =


ρ
(T−t)
d,1

(σ2
ue,1+β

′
1σ

2
we,1β1)

1/2 . . . 0

...
. . .

...

0 . . .
ρ
(T−t)
d,N

(σ2
ue,N+β′Nσ

2
we,NβN )1/2

 ,
δd,t = α + β′ � ft, ut ∼ N(0,Σu), εd,t ∼ N(0,Σεd), εp,t ∼ N(0,Σεp,t).

Here, ρd and ρνd denote the persistence matrices in (1) and (2), respectively. The observed

macroeconomic factors are modeled using a VAR(1) process

fi,t = ρf,ifi,t−1 + wi,t, wi,t ∼ N(0,Σw,i), i ∈ {1, ..., N}. (A-2)

A.2 Reconfiguration

The state-space representation (A-1) can be expressed generically as follows:

yt = Λ0,t + Λ1,tst, (A-3)

st = Γ0,t + Γ1st−1 + Ωεs,t, εs,t ∼ N(0,Σs).

The historical time series of a generic variable gt is expressed as follows:

gT = {g1, ..., gT}. (A-4)
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We collect parameters in

Θf = {ρf ,Σw}, Θd = {ρd, α, β,Σu}, Θν = {µνd , ρνd ,Σεd}, Θp = {λp,Σεp}. (A-5)

A.3 Kalman filter and smoother

We rely on the state-space representation (A-3). Conditional on fT ,Θd,Θd,Θν ,Θp, we apply the

standard Kalman filter. Suppose that the distribution of

st−1|{yt−1, f t−1,Θd,Θd,Θν ,Θp} ∼ N(st−1|t−1, Pt−1|t−1).

Then, the Kalman filter forecasting and updating equations take the form

st|t−1 = Γ0,t + Γ1st−1|t−1

Pt|t−1 = Γ1Pt−1|t−1Γ
′
1 + ΩΣΩ′

st|t = st|t−1 + (Λ1,tPt|t−1)
′(Λ1,tPt|t−1Λ

′
1,t)
−1 (yt − Λ0,t − Λ1,tst|t−1

)
Pt|t = Pt|t−1 − (Λ1,tPt|t−1)

′(Λ1,tPt|t−1Λ
′
1,t)
−1(Λ1,tPt|t−1).

In turn,

st|{yt, f t,Θd,Θd,Θν ,Θp} ∼ N(st|t, Pt|t).

Next, the backward smoothing algorithm developed by Carter and Kohn (1994) is applied to recur-

sively generate draws from the distributions st|(st+1:T , y
T ,Θd,Θd,Θν ,Θp) for t = T−1, T−2, . . . , 1.

The last element of the Kalman filter recursion provides the initialization for the simulation

smoother:

st|t+1 = st|t + Pt|tΓ
′
1P
−1
t+1|t

(
st+1 − Γ0,t − Γ1st|t

)
Pt|t+1 = Pt|t − Pt|tΓ′1P−1t+1|tΓ1Pt|t

sjt ∼ N(st|t+1, Pt|t+1), t = T − 1, T − 2, ..., 1.
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A.4 Posterior draws

We treat the smoothed estimates dT , νTd , uT , εTp from Appendix A.3 as data points. Since all

cases can be represented within a VAR framework, we adopt the following generic notation for

the VAR model and outline the process for obtaining posterior coefficients.

c′t =
[

1′ c′t−1 g′t

]
︸ ︷︷ ︸

w′t


φ′0

φ′1

φ′2


︸ ︷︷ ︸

φ′

+ε′c,t, εc,t ∼ N(0,Σ). (A-6)

Define X = [c2, ...cT ]′, W = [w2, ..., wT ]′, and εc = [εc,2, ..., εc,T ]′ conditional on the initial observa-

tions. If the prior distributions for φ and Σc are

φ|Σ ∼MN
(
φ,Σ⊗ (V φξ)

)
, Σ ∼ IW (Ψ, d), (A-7)

then because of the conjugacy the posterior distributions can be expressed as

φ|Σ ∼MN
(
φ,Σ⊗ V φ

)
, Σ ∼ IW (Ψ, d) (A-8)

where

φ =
(
W ′W + (V φξ)

−1)−1(W ′X + (V φξ)
−1φ
)
, (A-9)

V φ =
(
W ′W + (V φξ)

−1)−1,
Ψ = (X −Wφ)′(X −Wφ) + (φ− φ)′(V φξ)

−1(φ− φ) + Ψ,

d = T − k + d, k = dim(φ).

We follow the exposition in Giannone et al. (2015) in which ξ is a scalar parameter controlling the

tightness of the prior information in (A-7). For instance, prior becomes more informative when

ξ → 0. In contrast, when ξ =∞, then it is easy to see that φ = φ̂, i.e., an OLS estimate.
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A.4.1 Posterior draws under restrictions

When φ1 is restricted by φ1 = ρ1I, where ρ1 is a scalar, (A-6) can be redefined as

c̃′t ≡ c′t − φ′0 − g′tφ′2 = c′t−1φ1 + ε′c,t, εc,t ∼ N(0,Σ). (A-10)

Note that (A-10) can be arranged as



c̃′1,2
...

c̃′1,T
...

c̃′N,2
...

c̃′N,T


︸ ︷︷ ︸

X̃

= ρ1



c′1,1
...

c′1,T−1
...

c′N,1
...

c′N,T−1


︸ ︷︷ ︸

W̃

+



ε′c,1,2
...

ε′c,1,T
...

ε′c,N,2
...

ε′c,N,T


︸ ︷︷ ︸

ε̃c

, ε̃c ∼ N(0,Σ⊗ IT−1), (A-11)

L−1X̃ = L−1W̃ + L−1ε̃c, LL′ = Σ⊗ IT−1.

Then, we can consider X = L−1X̃, W = L−1W̃ , and var(L−1ε̃c) = IN ⊗ IT−1 and derive (A-8)

accordingly.

Remarks. We can apply the same technique for λp in (A-1). Let λ̃p represent the previously

drawn posterior. Specifically, define

c̃i,t = Φ−1(pot )− (δp,t − λ̃p + γp,tdt) (A-12)
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to construct 

c̃′1,1
...

c̃′1,T
...

c̃′N,1
...

c̃′N,T


︸ ︷︷ ︸

X̃

= λp



1
...

1
...

1
...

1


︸ ︷︷ ︸

W̃

+



ε′p,1,1
...

ε′p,1,T
...

ε′p,N,1
...

ε′p,N,T


︸ ︷︷ ︸

ε̃

, ε̃ ∼ N(0,Σεp ⊗ IT ), (A-13)

L−1X̃ = L−1W̃ + L−1ε̃, LL′ = Σ⊗ IT−1.
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B Simulation of Election Outcomes

We construct the simulation using the principal components estimated in the previous section.

We can write the principal components rotation as:

di,t = d̄i +
10∑
j=1

ai,jxj,t

where d̄i indicate the time-series mean of di,t, xj,t as the j’th principal component, and ai,j denotes

the loading of state i on PC j. Our goal will be to simulate xj,T , i.e., the value of the principal

component j on election day T , and then map it to a distribution of di,T using the estimated

loadings.

In the paper, we found that the first two principal components account for the vast majority

of the variation in di,t. To gauge the importance of comovement, we will consider the two polar

cases. First, we will model di,T as being entirely explained by the first two PCs, and later we will

contrast these results with a counter-factual in which di,T are cross-sectionally orthogonal.

Let Xt denote the 2 × 1 vector of the first two PCs at time t. Our goal is to construct the

conditional distribution of XT given a value of Xt on the last day in our sample. We assume

that Xt follows a random walk with innovation covariance given by the sample covariance Σ̂X =

Cov[Xt−Xt−1]. The choice to model Xt is a random walk as opposed to, say, a VAR, is motivated

by two observations. First, the plot of the first two PCs shows that the PCs are highly persistent

and that PC1 trends upwards, suggesting that a stationary process would likely be misspecified.

Second, the martingale property of a random walk yields the simplest possible model for the

average path of the PCs, avoiding extrapolation from a relatively short sample over which the

PCs are computed.

The conditional mean of XT given Xt is just Xt, and the conditional variance of XT given Xt

is (T − t)Σ̂X . Assuming the innovations are jointly normal, we can simulate the final PC values

by drawing from the multivariate normal distribution:

XT ∼ N (Xt, (T − t)Σ̂X).
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To obtain the election outcome in a particular state i, we first construct the final restricted net

voter preference d̃i,T :

d̃i,T = d̄i +
2∑
j=1

aijXj,T

and then define the binary election outcome as 1d̃i,T>0.

To see how much role comovement plays in the conditional probabilities of overall election

outcomes, we aggregate our results. To start, we must take a stand on election outcomes in the 46

states and electoral districts outside of our analysis. Given the choices we made when constructing

the sample, these states have the least uncertainty about their eventual winner. Therefore, we

assign them either to the Democratic or to the Republican candidate in all simulations based

on their latest prediction market prices. If the price of the Harris contract is above 0.8, we

assume that she wins it with certainty, and if it is below 0.2, we assume that Trump wins it with

certainty. This yields a starting value of 203 electoral votes for Harris, which includes DC and a

congressional district in Nebraska where the state is otherwise won by Trump, and 189 for Trump,

which includes a congressional district in Maine, a state otherwise won by Harris.

We then compute the total number of electoral votes won by Harris as

203 +
10∑
i=1

1d̃i,T>0 × EVi

where EVi is the number of electoral votes assigned to state i. We repeat this calculation for each

simulation and then compute the fraction of simulations in which each of the candidates wins

at least 270 electoral votes. This fraction is the probability of the candidate winning the overall

election.
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