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Abstract

Many social platforms have recently enabled users to tip online content creators. We investigate how

individuals decide whether and how much to tip content creators. Our novel data come from an online

board game platform, on which users create and consume content, react to content, and can sell and

purchase board games. A unique aspect of our data is that we observe all tipping incidences since the

introduction of tipping on the platform. We develop a model in which users make tipping decisions as a

function of their beliefs about an evolving tipping norm, content quality, user characteristics, and other

factors. Users’ beliefs about the tipping norm are based on two types of signals: tips they received

themselves and tips they observed other users to give to the focal piece of content. A new feature of our

model is that we allow the signals to be correlated within a type, across types, and across time. Users

incorporate the signals into their belief about the tipping norm via Bayesian updating. Our results

show that both types of signals impact users’ perception of the current tipping norm with the tips

they personally received being a more informative type of signal. Tip amounts are primarily driven

by users’ beliefs about the tipping norm followed by content quality and user characteristics. Using

prediction exercises, we show that users tip smaller amounts but much more often when tips given in

the broader community are not visible, increasing the total tip amount by 39%. Our predictions also

demonstrate that tipping behavior is sticky after a change in platform’s information disclosure, even

in the medium-run and especially as it relates to the breadth of tipping. We discuss the implications

of different information disclosure levels for platform design.

Keywords: Online Tipping, Platform Design, Information Disclosure, Social Norms, Bayesian Updat-

ing.

JEL Classification: D83, L82

∗We thank Anand Bodapati, Randy Bucklin, Pradeep Chintagunta, Brett Hollenbeck, Tai Lam, Peter Rossi, and Robert

Zeithammer for their suggestions. We thank seminar participants at Indian School of Business, San Diego State University,

and Texas A&M for their comments. All errors are our own.
†University of California Los Angeles, mahsaparidar@ucla.edu.
‡University of Pittsburgh, mina.ameri@pitt.edu.
§University of California Los Angeles, elisabeth.honka@anderson.ucla.edu.





1 Introduction

Many social platforms have launched tipping features on their websites in recent years. For

instance, YouTube announced the “Super Thanks” feature in July 2021, TikTok launched

“Tip Jar” in October 2021, and Instagram introduced “Gifts” for Reels in November 2022.1

The introduction of a tipping feature highlights the growing recognition of the importance

of financial support from peers in sustaining the efforts of content creators. An immediate

question that a platform faces when launching such a new feature is how to design the

tipping environment on the platform. Should the platform publicly display who tipped

which amount to a piece of content? Or should it keep such information private? Or

should the platform reveal some but not all information, e.g., by showing the average tip

amount? In this paper, we examine the effects of different tipping information disclosure

strategies on total tip amounts, the number of tippers, and other tipping-related outcomes

and discuss their implications for platform design.

Tipping decisions are generally driven by multiple factors (e.g., gratitude, generosity,

quality, etc.). One important driver of tipping decisions are social norms (Akerlof 1980;

Bernheim 1994; Azar 2004). Social norms are the widespread convergence or the unplanned,

unexpected result of individuals’ interactions that determine what is/is not acceptable in

a group or community (Muldoon et al. 2013). These norms are important as they provide

order, predictability, and harmony in any social group by creating an expected idea of how

one should behave (Young 1993). In the context of online tipping, where there is relatively

little precedence, these norms are emergent properties, arising from individuals’ actions and

decisions. While the effects of quality and (established) social norms on tipping behavior

have been documented (Azar 2007, 2020), there is a lack of empirical research investigating

how an evolving social norm impacts users’ tipping and how individuals’ tipping decisions

1Other platforms such as Twitter, Clubhouse, and Twitch have also introduced tipping features, re-
flecting a broader trend towards enabling direct financial support for content creators within online com-
munities.
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influence the development of a social norm. Examining the new practice of online tipping

and the factors impacting it provides insights into how norms form and evolve in digital

communities.

Social norms typically develop through repeated interactions and learning (Young 1993).

In the context of online tipping, users “interact” by producing and consuming content and

“learn” by observing others’ tipping decisions. Because social platforms govern which

information users can see about others’ tips, e.g., who tipped what, when, and how much,

they can influence the evolvement of a tipping norm. Using prediction exercises, we first

investigate how different information provision strategies affect the development of a tipping

norm and users’ tipping decisions. We then examine how “sticky” a tipping norm is, i.e.,

can social platforms still significantly change a tipping norm and users’ tipping decisions

in later stages? Or is a platform forever “stuck” with the tipping norm that arose based

on the platform’s initial information disclosure decisions?

We use data from an online board game platform called BoardGameGeek.com (BGG).

BGG is a special interest online community where individuals who are interested in board

games can learn about them and interact with other board game fans.2 More importantly,

because users provide all the content on this platform, they can act as content creators,

generating valuable information and reviews about board games as well as entertaining

content.3 The platform also has its own currency, and starting May 13th, 2005 allowed

users to tip content creators using this currency. BGG is an ideal environment to study

online tipping because all users’ interactions and tipping behaviors, especially after the

tipping feature was first introduced, are observable. We study users’ decisions for 22 months

following the introduction of tipping. During this time, users who gave tips, on average,

2Consumers increasingly prefer special interest online communities over (general) social me-
dia, e.g., there are over 2.2 million subreddits and more than 10 million Facebook groups
(https://www.amity.co/blog/40-statistics-you-should-know-about-online-communities). The number of
members in special interest online communities has increased by 81% since 2019. Examples of other
prominent special interest online communities are goodreads.com, cyclechat.net or soundcloud.com.

3In terms of the ratio of content consumers create and consume, BGG is similar to other online forums
such as reddit.com, stackoverflow.com or stackexchange.com.
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gave 5.73 tips and users who received tips, on average, received 15.60 tips annually. Our

data show that the standard deviation of tip amounts decreased over time, suggesting that

users tipped more similar amounts as time progressed.

In our model, social norms are incorporated as users’ perceptions of the tipping norm,

which are continuously updated via Bayesian updating. These perceptions are driven by

signals from two sources: users’ self-experience of tips they received (Young 2015) and

observed tipping behavior in the BGG community (Schuster, Kubacki, and Rundle-Thiele

2016). A new feature of the model is that we allow the signals to be correlated when deriving

the posterior distribution. More specifically, signals can be correlated within a source and

a time period, across sources and within a time period, and across time. The perceived

norm, along with characteristics of the focal content and a user’s personal tendency to tip,

govern the user’s tip decision.4 The model is estimated using a Tobit framework.

Our results show that users learn about the current tipping norm through both their

own self-experience of receiving tips and observed tipping behavior on the platform. On

a per-tip basis, users find the tips they receive themselves to be more informative than

tips observed in the community in shaping their perception of the tipping norm. However,

because of the much larger number of tips users observe in the community than receive

themselves, the total effect of tips observed in the community on the perceived norm is

larger than the total effects of tips received. Furthermore, we separate the portions of the

utility that come from content quality, individuals’ beliefs about the norm, and individual

characteristics (via user fixed effects). We show that users’ beliefs about the norm, on

average, represents 67% of a tip given on the platform followed by content quality and

individual characteristics with 28% and 5%, respectively.

Next, we examine how information disclosure affects users’ tipping behavior. We do so

by implementing three prediction scenarios: in the first one, users update their perception

4While reciprocity has been shown to be another driver of tipping decisions, our data does not suggest
that reciprocity plays a role in this empirical context (see Section 4 for a detailed discussion).
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about the tipping norm only based on personal experience, i.e., they cannot see the tips

given in the broader community; in the second one, users update their perceptions about

the tipping norm only based on the tips given in the broader community, i.e., they can-

not see the tips they receive; and in the third one, users update their perception about

the tipping norm based on complete information about tips received personally, but only

partial information about tips in the broader community, i.e., they observe the average tip

given by the broader community. Our results show that information disclosure (visibil-

ity) of personal signals has little impact on tipping behavior, but information disclosure of

community signals significantly affects users’ tipping decisions. When tips in the broader

community are not visible, users tip smaller amounts but much more often, increasing the

total tip amount by 39%. These findings suggest that platforms can strategically manage

tip visibility to increase overall tipping activity. However, signal invisibility also leads to

larger uncertainty about the tipping norm, highlighting the multifaceted effects of different

information disclosure strategies.

And lastly, we study how sticky the perceived tipping norm and tipping behavior are.

We do so by comparing outcomes between the same three information disclosure scenarios

discussed in the previous paragraph but introduced in the second half of the study period

only and the scenario when users observe all signals throughout the whole study period, our

main model. Our predictions show that the perceived tipping norm and tipping behavior

are quite sticky even in the medium-run, i.e., nine months after the change in information

disclosure. This is especially the case for aspects of tipping that speak to the breadth of

this behavior: the number of unique tippers, the number of unique tippees, and the number

of unique tipped content. For example, if a platform removes the visibility of community

signals after the first half of the study period, the number of unique tippers, the number of

unique tippees, and the number of unique tipped content are smaller by −5.12%, −22.01%,

and −14.59%, respectively, even a year after the change compared to a scenario where

community signals were never visible.
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The contribution of this paper is two-fold. First, we add to managers’ and academics’

understanding of the impact of different information disclosure strategies on the perceived

tipping norm and users’ tipping decisions. This is particularly relevant since digital plat-

forms often adopt varied approaches to the visibility of such tip incidences. At one end

of the spectrum, platforms such as Twitch or YouTube make tipping visible and salient

on users’ screens. On the other end of the spectrum, platforms such as Patreon or Cameo

keep monetary contributions private between the supporter and the content creator. This

study empirically evaluates the impact of these and other information disclosure strategies

on tipping decisions.

Second, we show how a tipping norm as a collective of individual decisions evolves

over time and how it affects individuals’ tipping behavior. By investigating the impact of

perceived norms along with content quality while controlling for users’ intrinsic motivation,

we shed light on how users decide to tip. We further show that, while users learn from

self-experience and observing others’ actions, these two sources of information play different

roles in shaping users’ beliefs about the norm. By examining how these factors interplay in

shaping individual tipping behaviors, we provide more insight into the evolution of tipping

norms in online communities, where norms are emerging and evolving.

The remainder of this paper is organized as follows: In the next section, we review the

relevant literature. In Section 3, we describe our data. We present our model in Section

4 and discuss the results in Section 5. In the following section, we perform prediction

exercises and conclude in section 7.

2 Relevant Literature

In this section, we review three streams of literature on tipping, social norms, and special

interest communities and delineate the positioning of our research in relation to the findings

from the extant literature.

5



2.1 Tipping

Previous literature has found three main reasons as to why people tip offline: (i) as an in-

centive/reward for higher-quality service (Azar 2007; Lynn and Sturman 2010), (ii) because

of psychological reasons, e.g., gratitude, social reputation (Conlin, Lynn, and O’Donoghue

2003; Lynn 2014), and (iii) to adhere to social norms (Azar 2010). Furthermore, previous

research has also found that default options affect people’s tipping decisions (e.g., Haggag

and Paci 2014; Everett et al. 2015).

Few papers have investigated digital tipping. Using data from a field experiment on

Uber, Chandar et al. (2019) find that tipper characteristics explain much more of the

observed variation in tipping than tippee characteristics. Similarly, in the context of an

online freelance marketplace, Kim, Amir, and Wilbur (2023) show that tipping decisions

are largely driven by tipper characteristics, such as geography and satisfaction. The authors

demonstrate that an injunctive norm message significantly increases tipping rates among

new buyers, while reciprocity-related messages have no significant impact. Lu et al. (2021)

investigate the relationship between audience size and tip revenue of live streamers. They

find that a larger audience amplifies social image benefits, thereby increasing both the

number of viewers and the revenue from tips for live streamers.

Similar to the before mentioned three papers, we also study digital tipping. However,

we develop a micro-founded model that incorporates the main drivers of online tipping

decisions and quantifies their influence. Further, our model allows for the development of

a social norm related to tipping and for users to be affected by it.

2.2 Social Norms

Social norms are the unwritten codes and informal understandings that define what others

expect of us and what we expect of others (Young 2015), as well as the unplanned result of

individuals’ interactions that determine what is/is not acceptable in a group or community
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(Bicchieri, Muldoon, and Sontuoso 2011). Three aspects are important in the evolution

of social norms: (i) they are the result of repeated interactions, (ii) they evolve through

learning, and (iii) they underpin social order (Young 1993).

There is a vast amount of literature in different fields, such as marketing, economics,

psychology, health, and the environment, investigating the effects of social norms on be-

havior. In marketing, researchers have examined how social norms influence different types

of consumer behavior, e.g., the reuse of hotel towels (Goldstein, Cialdini, and Griskevicius

2008, Chen et al. 2010), loyalty (Lee, Murphy, and Neale 2009), and responses to new prod-

ucts (Homburg, Wieseke, and Kuehnl 2010).5 One of the few papers studying the effects

of social norms online is Burtch et al. (2018). The authors run an experiment to infer the

effects of financial incentives and social norms on online reviews. Burtch et al. (2018) find

that monetary rewards increase the number of reviews, while social norms increase reviews’

length, and combining the two yields the greatest benefit.

While researchers have studied the effects of social norms, few papers have investigated

how social norms evolve. The papers that have studied social norm development mostly

use a game-theoretic or computational approach (e.g., Young 1993; Sen and Airiau 2007;

Epstein 2001). To the best of our knowledge, there are only two papers that have studied

aspects of social norm development empirically. Garrod and Doherty (1993) analyze the

effects of interacting with peers as opposed to isolated individuals on the speed of social

norm development. Schuster, Kubacki, and Rundle-Thiele (2016) show that increasing the

visibility of a target behavior can change the perceived social norm related to the behavior.

Our paper belongs to the small group of papers studying social norm development

empirically. In contrast to the two previously mentioned papers, we explicitly model the

perceived social norm at each point in time, how individuals’ actions affect it, and how it

affects individuals’ actions.

5See Melnyk, Carrillat, and Melnyk (2022) for a meta-analysis of the effects of social norms on consumer
behavior.
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2.3 Special Interest Communities

Lastly, our paper is also related to the literature on special interest communities. Previous

research has investigated different aspects of online communities. For example, Hendricks

and Sorensen (2009) study an online music market and find that releasing a new album

causes a substantial and permanent increase in the sales of the artist’s old albums. Zhang

and Godes (2018) study Goodreads.com and show that with sufficient experience, having

more ties leads to better decision-making. Nevskaya and Albuquerque (2019) use data

from a massive online video game platform. They find that improving reward schedules

and imposing time limits leads to shorter usage sessions among players and longer product

subscriptions. And lastly, Ameri, Honka, and Xie (2023) study how strangers become

friends on an anime platform. To the best of our knowledge, no empirical study has

investigated the board game industry.

3 Data

Our data come from Boardgamegeek.com, an online community revolving around board

games. It was established in 2000 and has become the largest online database for board

games as well as the largest online community for board game fans with over 3 million

users worldwide in 2024. Figure 1 shows the number of users joining BGG over time.
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Figure 1: Number of Users Joining BGG Over Time

Users create all content on BGG. They provide detailed information about new and

existing games via reviews, upload files and images, create their favorite board game lists

(“Geeklist”), and also engage in a variety of conversations with other users in the discussion

forum.

BGG utilizes a platform-specific virtual currency called GeekGold (GG) for all monetary

transactions. GG cannot be directly bought GG from the platform.6 Users can earn 1 - 5

GG as compensation for writing a review or starting a new discussion thread. Users can

also earn GG in the form of tips from other users for the content they create. Users can tip

any amount they want. Aside from tipping, users can use their GG to buy virtual cosmetic

items for their profile page or to buy board games from peers. Users can also use their GG

to participate in special events, such as lotteries, to win board games.

As is common in most online communities, users can react to the content produced by

others not only by tipping but also by giving “likes.” Figure 2 shows a post for which the

content creator received both likes and tips from other users. Users can see who tipped and

6The platform rewards users who donate money to BGG by giving them GG. Some users may also buy
GG from other users privately. However, neither donations nor GG purchases are common.
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the amount of each tip by clicking on the cent icon and who liked the content by clicking

on the thumbs-up icon.

Figure 2: Example of a Post for Which the Creator Received Tips and Likes

3.1 Data Collection, Cleaning, (Re)Construction

BGG introduced tipping on May 13th, 2005. At that point in time, BGG had about 80,000

users. We study tipping behavior on BGG during the next 22 months (“study period”)7

and focus on users who tipped at least once during the study period. This gives us 1,785

users with 6,672 tipping incidences.8 We drop 109 tip incidences with tip amounts of more

than 20 GG.

For our sample of users, we collected all the content they created, all tips they gave, and

information on other spending activities such as purchasing symbolic badges. Furthermore,

we tracked all user activities that left a digital footprint on the platform, e.g., liking content,

participating in a lottery, adding to board game collections, etc.

Two limitations of our data are that we do not observe user logins and the content users

viewed on the platform. Since this information is not available, the following data patterns

motivate and support assumptions we make: In 100% of the tipping incidences, users also

7On March 27th, 2007, BGG added suggested default tip amounts.
8Our sample also includes users who joined after March 13th, 2005, as long as they tipped at least once

before March 27th, 2007.
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engaged in at least one other activity on the platform e.g., linking content, buying a badge

etc. Therefore, we focus on days on which users engaged in at least one other activity.

Additionally, in 95% of the tipping incidences, users had a non-monetary reaction (like,

comment, or reply) to the content they tipped. Hence, we focus on content for which users

had a non-monetary reaction.

In our data, we observe that users typically tip on the same day or on days following

a non-monetary reaction. Therefore, we model users’ tipping decisions for content on a

daily basis for up to 30 days following the non-monetary reaction (depending on the UGC

type).9

These last two steps result in a sample of 1,785 users who engaged in 6,672 tipping

incidences during the study period. Our panel contains 3.9 million user-content-day obser-

vations.

3.2 Data Description

Figure 3 illustrates the number of tip incidences and average tip amount for each UGC

category. Replies receive the highest average tip amount with 2.26 GG, and files receive

the lowest average tip amount with 1.66 GG.

9The following time periods cover 90% of tipping incidences for each type of UGC: 1 day for files,10
days for threads and Geeklists, 30 days for replies, and 14 days for images.
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Figure 3: Number of Tip Incidences and Average Tip Amount by Content Category

Table 1 summarizes key statistics of our data. On average, the per-incidence tip amount

a user gives is 1.86 GG, while the per-incidence tip amount a user receives is 2.07 GG,

indicating that users tend to receive slightly higher tips than they give. Furthermore, on

average, a user gives 5.73 tips and receives 15.60 tips annually, with the maximum number

of tips given and received being 260 and 81, respectively. Additionally, a focal user has, on

average, 43.67 GG available on any day. On average, 234.08 pieces of content are created

on BGG every day.

Mean Std. Dev. Min Median Max N

Tip Amount Per Tip

Avg. tip amount a focal user gives 1.86 1.92 0.01 1.00 20.00 1,785
Avg. tip amount a focal user receives 2.07 2.02 0.01 1.42 20.00 939

Tip Frequency (Annually)

Avg. tip frequency a focal user gives 5.73 11.73 1.00 2.00 260.00 1,785
Avg. tip frequency a focal user receives 15.60 23.48 0.17 5.55 81.35 939

Daily available GG 52.51 157.82 0.00+ 15 3,425.75 1,785
Daily UGC production 234.08 131.89 16.00 218.00 1,330.00 683

Table 1: Descriptive Statistics
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Figure 4 depicts the monthly standard deviation of tipping amounts over time. The

decrease in the standard deviation of tip amounts suggests that users tip more similar

amounts as time progresses.

Figure 4: Standard Deviation of Tips Given in a Month Over Time

Figure 5 shows the within-user standard deviation of tip amounts over time with 95%

confidence intervals for users who tipped at least twice.10 The standard deviation of

tip amounts decreases over each 6-month interval, suggesting that users tip more similar

amounts over time at the individual level, similar to the pattern observed on the aggregate

level.

10The pattern is similar for users who tipped at least three or at least four times.
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Figure 5: Within-User Standard Deviation of Tip Amounts Over Time

Users might have different tendencies to tip because of their nationality or culture.

Table 2 shows the number of tip incidences, average tip amount per tip incidence, and the

percentage of users in our data coming from each country.

Table 2: Tip Statistics By Country

Country Number of Average Tip Amount % of Users
Tip Incidences Per Tip Incidence

1 United States 5,607 2.00 70.85
2 Canada 696 1.89 8.40
3 Australia 367 1.83 4.43
4 United Kingdom 270 1.99 3.26
5 Germany 242 2.22 2.92
6 Other 841 1.92 10.15
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4 Model and Estimation

4.1 Model

4.1.1 Assumptions

We make several assumptions regarding users’ tipping decisions. Users are assumed to

be myopic, basing their tipping decisions on today’s utility without considering future

implications (Azar 2004; Lynn 2016, 2018; Azar 2020). In other words, users are not

strategic in their decision of whom and how much to tip and make each tipping decision

independently. In the context of tipping, being strategic might arise for two reasons:

budget limitation and reciprocity. With respect to budget limitations, users may need to

strategically decide which content to tip and how much to tip if they feel constrained by

their available budget relative to the amount of content they consume. In other words,

strategic behavior may occur when the tipping budget is limited compared to the number

of consumed content items, necessitating a careful allocation of tips. However, if the budget

is sufficiently large, i.e., the tip amounts are small relative to the available budget, users

do not need to be strategic about their tipping decisions. Given that, in our empirical

context, the average ratio of budget to tip for users is 126, we assume that the budget is

not limiting for users when deciding to tip.

Reciprocity, as discussed by Fehr and Gächter (2000), suggests that individuals may

tip others in return for having been tipped. In our data, only 2% of tips are given by a

pair of users to each other, suggesting that reciprocity is not a major driver in our setting.

Therefore, we do not include it in our model and assume that users make tipping decisions

independently of each other.

Each time a user visits the platform, she can tip content she sees. As discussed in

Section 3.1, because we neither observe logins nor which content users see, we make the

following assumptions based on data patterns. First, our data indicate that on the days
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on which users tipped a piece of content, they also always engaged in some other form of

activity. Hence, we assume that user i can only make tipping decisions on t ∈ Ti, where Ti

contains the days user i engaged in any activity other than tipping on the platform, i.e., t

does not represent calendar days. Second, our data show that in 95% of tipping incidences,

users also had a non-tipping reaction to the piece of content. Therefore, we consider a user

as having seen a piece of content if the user had a non-monetary reaction to the piece of

content. And lastly, depending on the type of content, tipping happens within 1 - 30 days

following the non-monetary reaction. Thus, we assume that user i makes tipping decisions

for content j ∈ Jit, where Jit contains content that the user has shown a non-monetary

reaction to within a certain number of days prior to t. The number of days is one for files,

ten for threads and Geeklists, 14 for images, and 30 for replies.

4.1.2 Utility Function

Formally, user i = 1, . . . ,M decides how much to tip each piece of content j ∈ Jit on day

t ∈ Ti. User i’s utility Uijt from tipping content j on day t is given by:11

Uijt = αi + βµit + γ′Qijt + η′Cijt + εijt, (1)

where αi represents the user’s intrinsic tip tendency and captures internal factors such

as generosity, status-seeking, and cultural background, which have been shown to impact

tipping behavior (Akerlof 1980; Bernheim 1994; Azar 2007). µit is user i’s posterior belief

about the tipping norm on day t (discussed in detail in the next subsection), Qijt captures

content quality, Cijt contains control variables, and εijt is a normally distributed error term.

Naturally, users are more likely to give (higher) tips to higher-quality content to show

their gratitude and to encourage more (high-quality) content creation in the future (Azar

2007; Paridar, Ameri, and Honka 2023). Qijt contains variables capturing content quality.

11This utility function is equivalent to an indirect utility function with choice of the amount of a product
with price of 1; the available amount of money acts as the budget constraint bounding the solution space.
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For textual content, we use the length of the text, operationalized as number of sentences,

that has been shown to be a good proxy for content quality (Blumenstock 2008; Demberg

and Keller 2008; Hasan Dalip et al. 2009; Anderka, Stein, and Lipka 2012). For images,

quality is assessed by multiplying the dimensions (width x height). We do not have quality

measures for files.

Cijt contains the control variables. The number of likes given to a piece of content

captures its popularity. We include dummy variables for each type of content, control for

user i’s membership length, and user i’s available GG. Since newer content might be more

engaging and thus more likely to receive tips, we also control for content age in days. A

user can only receive tips if she made a post in the past. Relatedly, a user who wrote

multiple posts in the past is more likely to receive tips than a user who wrote one post.

To account for this, we include dummy variables which indicates whether a user has ever

received any tips before and control for the number of content pieces a user created in the

past 7 days. To control for the overall activity level on the platform, we also include the

number of content pieces created by all users on the platform on day t.

4.1.3 Perceived Tipping Norm and Signals

µit captures user i’s belief about the mean of the tipping norm on day t. Initially, user i

holds an uncertain prior belief about the tipping norm that follows a normal distribution

denoted by µ ∼ N (µ0, σ
2
0), where µ0 and σ0 are initial beliefs about the mean and variance

of the norm at time 0, respectively. In each time period t, user i updates her belief about

the current tipping norm using a set of received signals, Ψit, from two sources in a Bayesian

fashion.

Users use two types of signals to update their belief about the norm. The first type of

signal is the Personal Signal, which captures user i’s personal experience (Sen and Airiau

2007; Parrett 2011). A user may receive several tips in a day with each tip providing

additional information and acting as a separate signal. In addition, since many users do
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not visit the platform every day, they would observe all the tips received since their last

visit once they visit the platform on day t. As result, we model the personal signals user

i received on day t as the tips she received in the past seven days. Formally, on each day

t, user i receives Np
it personal signals, where each personal signal spitn for n = 1, . . . , Np

it is

normally distributed with mean µ and variance σ2
p. µ represents the mean of the tipping

norm and σ2
p is the noise associated with the personal signals, i.e.,

p{spitn | µ, σ2
p} ∼ N (µ, σ2

p). (2)

The second type of signal is the Community Signal, which captures the tips user i

observes other users to give to others (Schuster, Kubacki, and Rundle-Thiele 2016). We

model the community signal as the tips other users have given to all the content that user

i is looking at on day t. On each day t, user i receives N c
it community signals, where each

community signal scitn for n = 1, . . . , N c
it is normally distributed with mean µ and variance

σ2
c , i.e.,

p{scitn | µ, σ2
c} ∼ N (µ, σ2

c ). (3)

Both personal and community signals point to the same mean tipping norm µ. However,

the noise or precision of the two signals are not necessarily the same resulting in different

variances for the two types of signals. Note that although the signals from the two sources

and the dependent variable are the same in nature, signals are a sample from the pool of

tipping decisions over different time periods. Thus, we do not need to assume that the

variances of the dependent variable and the signals are the same.

Furthermore, because we not only observe when an individual receives a signal but also

the value of the signal, we can remain agnostic about whether the signals come from a

distribution with constant or time-varying mean. Thus, we use the term µ as a generic

term, without any indices, to refer to the tipping norm without taking a stand on whether

the tipping norm is constant or time-varying.
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Since we do not observe the exact time of the day when a user makes her tipping decision

for each post j, we do not incorporate the sequence of user i’s decisions in a single day,

but instead assume that the user makes all her decisions about posts Jit simultaneously.

In other words, the user updates her belief about the tipping norm once per day, using all

the received signals from all posts Jit, and then makes her tipping decisions for posts Jit.
12

Given the number of content users interact with, we assume users do not remember the

signals they received after using them to update their belief. In other words, observing the

same tip on two different days results in receiving two signals of the same value.

4.1.4 Bayesian Updating with Correlated Signals

In our empirical context, signals are likely not independent draws from their underlying

distributions. For example, in the short run, a user may receive several large tips (per-

sonal signals) due to having written a high-quality post. These correlated signals are less

informative about the tipping norm than independent signals. The same issue applies to

community signals. For example, good posts may receive several large tips, leading to

correlated community signals. In the long-run, correlation between signals is also likely.

Higher quality posts receive higher tips, motivating users to increase the quality of their

content (Paridar, Ameri, and Honka 2023), which, in turn, leads to higher future tips and

creates correlation between signals over time.

Correlation between signals means that the i.i.d assumption for signals no longer holds,

i.e., we can no longer assume that signals come from univariate normal distributions. In-

stead, we assume that the signals come from a multivariate normal distribution given by

p{spi1,1, s
p
i1,2, . . . , s

p
it,Mp

it
, sci1,1, s

c
i2,2, . . . , s

c
it,Mc

it
| µ,Σ} ∼ MVN (µ,Σ) (4)

where Σ is a (Mp
it + M c

it) × (Mp
it + M c

it) covariance matrix capturing the uncertainty

12We assume that a day starts at 6 AM instead of 12 AM to account for users’ activities in late hours
as well as potential time differences. Based on the patterns in the data, the majority of activities on the
platform occurs around 12 PM. As a result, we model a user’s tipping decisions happening at 12 PM.
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or noise of the signals, with Mp
it =

t∑
τ=1

Np
iτ and M c

it =
t∑

τ=1

N c
iτ representing the number of

personal and community signals, respectively, user i has received until day t. Let Ω = Σ−1

be the precision matrix with its diagonal elements capturing the reciprocal variances of

the signals and the off-diagonal elements correspond to partial correlations between each

pair of signals. This structure can account for correlations between signals originating

from the same source as well as between signals from different sources. The first Mp
it rows

and columns contain the precision of personal signals, and the next M c
it rows and columns

contain the precision of community signals. Given that all signals point to the same mean,

the posterior mean and precision are given by13

µit =
1

ωit

ω0µ0 +

Mp
it+M

c
it∑

k,z=1,1

ωk,z(sitk + sitz)

2

 , (5a)

ωit = ω0 +

Mp
it+M

c
it∑

k,z=1,1

ωkz, (5b)

where ω0 = 1
σ2
0

and sitk, sitz ∈ {spit,1, . . . , s
p
it,Mp

it
, scit,1, . . . , s

c
it,Mc

it
}.

Equations 5a and 5b utilize the most general version of the precision matrix Ω in which

all off-diagonal elements can take on different values. In the estimation, we impose more

structure on the precision matrix that results in the estimation of three partial correlations

and three decay factors. More specifically, we estimate a partial correlation among all per-

sonal signals a user receives within a day, a partial correlation among all community signals

a user observes within a day, a partial correlation between the personal and community

signals a user sees in a day, and three decay factors (one for each correlation) that capture

the relationship between correlations on two consecutive days. In the following, we first

describe the structure of the precision matrix that results in the desired correlation struc-

ture. We then present the formulas for the posterior mean and precision. All derivations

13We provide a detailed derivation of the Bayesian updating process used to compute these posterior
distributions in Web Appendix A.2.
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are shown in detail in Web Appendix A.3.

The precision matrix Ω can be decomposed into several blocks, each representing the

interactions between signals of the same type within the same day, different types within the

same day, and signals across different days. The diagonal elements represent the precision

of personal and community signals and are denoted by ωp and ωc, respectively. The off-

diagonal elements, that will be used to calculate the partial correlations between signals

of the same type within the same day, are given by λp for personal signals and by λc for

community signals. The element that will be used to calculate the correlation across signal

types within the same day is denoted as λpc.
14 The off-diagonal elements across different

days decay according to the decay rates δp, δc, and δsc. The decay is applied exponentially

based on the time difference, i.e., for two personal signals between different days t and t′,

the element corresponding to the partial correlation between signals is given by δ
|t−t′|
p λp.

More specifically, at each time period, the precision matrix Ωt can be written as

Ωt =

Ωp ΩT
pc

Ωpc Ωc

 (6)

where Ωp and Ωc correspond to the precision of signals and the within-source correla-

tions among signals and Ωpc corresponds to the correlations between signals from different

sources. Ωp and Ωc have a t × t structure of smaller blocks with rows and columns corre-

sponding to time periods 1, . . . , t:

Ω|ω,λ ∈ {Ωp|ωp,λp ,Ωc|ωc,λc} =



Ω11 δ1Ω12 · · · δtΩ1t

δ1Ω21 Ω22 · · · δt−1Ω2t

...
...

. . .
...

δtΩt1 δt−1Ωt2 · · · Ωtt


(7)

14The formulas to calculate the partial correlations ρ are given by ρp =
ωp

λp
, ρc = ωc

λc
, and ρpc =

√
ωp×ωc

λpc
.
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The diagonal Ωkk blocks capture the precision and correlation of the Nik ∈ {Np
ik, N

c
ik}

signals received from a source in each time period. Thus, each Ωkk is a Nik × Nik matrix

with diagonal elements ω and off-diagonal elements λ. The off-diagonal Ωzk matrix blocks

are λJNiz×Nik
matrices, J being an all-ones matrix:

Ωkk =



ω λ · · · λ

λ ω · · · λ

...
...

. . .
...

λ λ · · · ω


Nik×Nik

, Ωzk =


λ λ · · · λ

...
...

. . .
...

λ λ · · · λ


Niz×Nik

(8)

We now turn to the matrix capturing the correlations between signals from different

sources, Ωpc. This matrix also consists of t× t blocks, with blocks representing the partial

correlation between signals of different types within and across time periods. The corre-

lation between two signals is proportional to λpc, decreasing at an exponential rate of δpc

as the time difference between the two signals increases. Formally, the matrix consists of

block matrices of size Np
iz×N c

ik for personal signals of time period z and community signals

of time period k with all elements equal to δ
|z−k|
pc λpc:

Ωpc = λpc



JNp
i1×Nc

i1
δ1pcJNp

i1×Nc
i2
· · · δtpcJNp

i1×Nc
it

δ1pcJNp
i2×Nc

i1
JNp

i2×Nc
i2

· · · δt−1pc JNp
i2×Nc

it

...
...

. . .
...

δtpc JNp
it×Nc

i1
δt−1pc JNp

it×Nc
i2
· · · JNp

it×Nc
it


(9)
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Given this structure for Ω, the posterior precision ωt can be derived as

ωt = ω0 + (ωp − λp)
t∑

k=1

Np
ik + (ωc − λc)

t∑
k=1

N c
ik

+ λp

t∑
k,z=1

δ|k−z|p Np
iz ×N

p
ik

+ λc

t∑
k,z=1

δ|k−z|c N c
iz ×N c

ik

+ 2λpc

t∑
k,z=1,1

δ|k−z|pc Np
iz ×N c

ik (10)

and the posterior mean is given by

µit =
1

ωt

(
ω0µ0 + (ωp − λp)

t∑
k=1

Spik + (ωc − λc)
t∑

k=1

Scik+

λp

t∑
k,z=1

(
δ|k−z|p Np

ikS
p
iz

)
+

λc

t∑
k,z=1

(
δ|k−z|c N c

ikSciz
)

+

λpc
2

t∑
k,z=1

(
δ|k−z|pc N c

ikS
p
iz

)
+
λpc
2

t∑
k,z=1

(
δ|k−z|pc Np

izScik
))

(11)

where Spik =
Np

ik∑
r=1

spikr, the sum of the personal signal values on day k, and Scik is defined

similarly.

4.2 Estimation

The log likelihood function for the Tobit model is given by:
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logL(θ|y,Ψ, Q, C) =
N∑
i=1

T∑
τ=1

J∑
j=1

{
I(yijt > 0) log

[
1

σ
φ

(
yijt − (αi + βµit + γ′Qijt + η′Cijt)

σ

)]

+ I(yijt = 0) log

[
Φ

(
αi + βµit + γ′Qijt + η′Cijt

σ

)]}
(12)

φ is the standard normal probability density function, Φ is the standard normal cumula-

tive distribution function, and I(·) is an indicator function. We set σ2
0 =1 for identification.

θ = (αi, β, γ, η, µ0, ωp, ωc, δp, δc, δpc, λp, λc, λpc, σ) is the vector of parameters to be

estimated.

In Web Appendix A.3, we show how we rewrite the formulas for the posterior mean and

posterior precision to avoid calculating permutations and speed up their computations dur-

ing the estimation. Our data contain about 4.2 million observations and we estimate about

1,800 individual fixed effects.15 Even though we estimate a non-linear model with normally

distributed errors, we do not face the incidental parameter problem in our empirical setting

because of the large T , i.e., we have a large number of observations per user (average of

2,350 observations per user) (Neyman and Scott 1948; Arellano and Hahn 2007). Because

of the size of the data and the estimation of a large number of fixed effects, the model es-

timation takes about 14 days. To calculate standard errors of the parameter estimates, we

use the BHHH estimator, i.e., the outer product of the gradient, instead of the numerical

Hessian (Berndt et al. 1974). All standard errors are clustered at the individual level.

5 Results

We present the estimation results in Table 3. Column (i) presents the results for a model in

which users do not use the two signals to continuously update their belief about the current

norm, but instead use their current values independently from the past to decide to how

much to tip. Columns (ii) and (iii) depict the results for models in which users utilize both

15In a Tobit model, the estimation of fixed effects cannot be avoided by de-meaning the data.
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signals to update their beliefs about the tipping norm in a Bayesian fashion as a function

of all the signals received so far. For the model whose results are shown in column (ii), we

assume that signals are independent. Column (iii) depicts the results for our main model

in which signals are correlated with the desired structure described in equations (8) - (12).

In the model without learning (column (i)), the coefficients for personal (Tips User

Received in Past Week) and community signals (Prior Tips Given to Focal Content) are

both positive and significant. The effect of a community signal is about 3.5 times larger than

the effect of a personal signal. The loglikelihood, AIC, and BIC all improve when we move

to a model in which users learn the tipping norm via Bayesian updating with independent

signals (see column (ii)). This improvement underscores the importance of accounting for

learning from past and current signals instead of simply controlling for current signals.

These three model fit measures again improve considerably when we transition to our main

model depicted in column (iii) in which users learn the tipping norm via Bayesian updating

with correlated signals. These improvements underline the importance of accounting for

correlations between signals. In discussing the results, we focus on our main model shown

in column (iii).
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Table 3: Empirical Results

(i) (ii) (iii)
Without Learning Learning With Learning With

Variable Independent Signals Correlated Signals

Learning

Posterior Belief of Tipping Norm 1.3272∗∗∗ 1.8470∗∗∗

(0.0000) (0.0614)

Prior Belief of Mean of Tipping Norm 2.1652∗∗∗ 2.1049∗∗∗

(0.0000) (0.0662)

Precision of Personal Signals 1.3064∗∗∗ 1.5930∗∗∗

(0.0001) (0.2335)

Precision of Community Signals 0.6657∗∗∗ 0.2746∗∗∗

(0.0004) (0.0212)

Off-Diagonal Elements between Personal Signals 7.6370∗∗∗

(0.3180)

Off-Diagonal Elements between Community Signals 1.8157∗∗∗

(0.0180)

Off-Diagonal Elements between 4.1867∗∗∗

Personal and Community Signals (0.0280)

Decay Factor of Partial Correlation between 0.6580∗∗∗

Personal Signals (0.0908)

Decay Factor of Partial Correlation between 0.5967∗∗∗

Community Signals (0.0324)

Decay Factor of Partial Correlation between 0.7338∗∗

Personal and Community Signals (0.1877)

Controlling for Tipping

Tips User Received in Past Week 0.0406∗∗∗

(0.0018)

Prior Tips Given to Focal Content 0.1540∗∗∗

(0.0099)

Content Quality

Image Quality 0.0600 0.053∗∗∗ 0.0600∗∗∗

(0.0423) (0.0001) (0.0166)

Thread Quality 0.3640∗∗∗ 0.4067∗∗∗ 0.4640∗∗∗

(0.0267) (0.0235) (0.0227)

Reply Quality 0.5080∗∗∗ 0.5225∗∗∗ 0.5175∗∗∗

(0.0350) (0.0137) (0.0128)

Geeklist Quality 0.3790∗∗∗ 0.4580∗∗∗ 0.3789∗∗∗

(0.0322) (0.0253) (0.0156)

Other Variables

Constant -5.6700∗∗∗ -7.6337∗∗∗ -7.1216∗∗∗

(0.5342) (0.0064) (0.1802)

Variance of Dependent Variable 5.5690∗∗∗ 7.9946∗∗∗ 7.2595∗∗∗

(0.2620) (0.0506) (0.1560)

Control Variables Yes Yes Yes

Individual Fixed Effects Yes Yes Yes

Calendar Month FEs Yes Yes Yes

Number of observations 3,937,582 3,937,582 3,937,582

AIC 98,144.00 97,006.52 94,038.16

BIC 122,144.04 121,085.31 118,010.45

LogLikelihood -47,030.18 -46,624.32 -45,201.08

Clustered standard errors in parentheses.

The dependent and independent variables are in logarithmic form.
∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001
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The coefficient capturing the effect of the posterior belief of the tipping norm is positive,

significant, and large, highlighting the important role that social norms play in shaping

tipping behavior. The estimate for the mean of the prior is 2.1049, translating into an

initial belief about the mean tipping norm of about 7.20 GG. The estimate of the precision

of personal signals is 1.5930 and statistically significant. This parameter value implies that

it takes receiving about 2 tips for a user’s uncertainty to reduce by 90%. Similarly, the

estimate for the precision of community signals is 0.2592, implying that 4 community signals

(within a day) or 3 community signals (one per day on four consecutive days) are needed

to reduce the uncertainty by 90%. In other words, receiving a tip is more informative

to users than observing tips given to others, as it requires fewer tips to reduce the user’s

uncertainty about the current tipping norm. This means that users place more weight on

personal experiences compared to community feedback when updating their beliefs and

making tipping decisions.

All three off-diagonal elements of the precision matrix are statistically significant and

range from 1.49 to 7.46. Using the formulas from footnote 14, the partial correlation

estimates range from 0.08 to 0.11. These partial correlations are of moderate size and

support the notion that signals are not independent in our empirical context, but also

show that users do not always tip what the previous tipper has given. The three decay

factors are also all statistically significant and range from 0.60 to 0.75. These estimates

imply that the three correlations between signals decay quite fast: they are about 10% of

their original magnitudes after five to eight time periods.

The estimates for the content quality variables are all significant and positive, indicating

that higher quality posts generally receive higher tips. This suggests that users recognize

and reward the effort put into creating high-quality content.

Figure 6 shows the average predicted tip amount over time as well as users’ posterior

belief about the norm at each point in time. The decreasing standard deviation of the

predicted tip amounts in Figure 6(a) indicates less variation and more convergence in
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tipping behavior. Additionally, the average posterior norm change slows down after a

sharp decrease in the first six months, with its standard deviation also decreasing, further

supporting a convergence of beliefs about the norm (Figure 6(b)). We show the average

predicted number of tipping incidences in a day and the predicted total tip amount given

by all users in a day in Web Appendix B.

(a) Predicted Tip Amount Per Tip Incidence

(b) Posterior Belief about Norm

Figure 6: Predicted Tips and Posterior Norm Belief with 95% Confidence Intervals

5.1 Model Fit

We further examine the predictive performance of the model through a simulation where

we predict users’ decisions and use the predicted tip amounts as the signals other users
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receive in following days. Our model predicts 1,697 users giving 7,136 tips with an average

tip amount of 2.33 GG. In the actual data, we observe 1,785 users giving 6,672 tips with an

average tip amount of 1.93 GG. Thus, we conclude that the model fits the data patterns

well.

6 Prediction Exercises

In this section, we first quantify the relative contributions of drivers of tip decisions. We

then investigate how different information disclosure strategies affect the perceived tipping

norm development and users’ tipping decisions. And lastly, we examine how “sticky” the

tipping norm and tipping decisions are and whether social platforms can significantly affect

them at later stages.

6.1 Tip Decomposition

Here, we examine the contributions of different utility components to the tip amounts

users give. We organize utility components into four groups: quality, perceived norm,

user characteristics (via individual fixed effects) and others, which contains the remaining

variables in the utility function. We measure the relative importance of each group by

predicting the portion of utility driven by it.

Table 4 reports descriptive statistics for the portion of tip amount due to quality, norm,

individual characteristics and other factors. On average, the perceived norm represents 67%

of the tip amounts given on the platform, while the quality of content contributes 28%. In

contrast to previous literature (Chandar et al. 2019; Kim, Amir, and Wilbur 2023), which

has found that tipping decisions are largely driven by tipper characteristics, our results

indicate that tipper characteristics only play a minor role in individuals’ tipping decisions.
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Table 4: Description of Tip Amount Decomposition

Utility Components Mean Median Min Max SD N

Quality 0.28 0.23 0 1 0.17 7,136
Norm 0.67 0.71 0 1 0.18 7,136
User 0.05 0.00 0 1 0.07 7,136
Other 0.00 0.00 0 1 0.04 7,136

In Figure 7, we examine how the contributions of the four groups of utility components

to tip amounts change over time. Initially, the perceived norm drives nearly 90% of the tip

amounts, followed by quality and individual characteristics. Within the first three months,

the portion driven by the perceived norm declines rapidly and the portion driven by quality

increases rapidly. The portions remain largely stable after the first six months with the

exception of individual characteristics whose portion declines somewhat starting in the

second half of 2006. To summarize, while the relative contribution of the social norm has

decreased compared to the early weeks, it always makes by far the largest contribution.

Figure 7: Tip Amount Decomposition over Time with 95% Confidence Intervals

6.2 Information Disclosure

Users receive two types of signals about the tipping norm on BGG: personal signals (tips

received by the focal user) and community signals (tips given to focal content by other
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users). However, this is not the case on all digital platforms. For example, while plat-

forms such as Twitch or YouTube make tips visible and salient on users’ screens, platforms

such as Patreon or Cameo keep monetary contributions private between the supporter and

the content creator. Here, we empirically evaluate how different information disclosure

strategies, i.e., tip visibility, impact users’ tipping behavior.

To investigate the effects of information disclosure, we predict tipping behavior when

either the personal or community signals are invisible (“No Disclosure”) and when users

can only see the average community signal (“Partial Disclosure”).16 For each scenario, we

predict users’ tipping behavior based on their perceptions of the tipping norm derived from

the available signals and under the assumption that the quality of the content remains

constant. For each scenario, we repeat the prediction calculations 100 times (with different

error draws) and then compute the average predictions. We then compare the average

predictions from these three scenarios to the average predictions from our main model.

We report the average percentage changes for each scenario compared to our baseline

main model in Table 5. When community signals are partially or completely invisible

(columns (i) and (ii)), users tip more frequently but give smaller amounts when they tip.

In both these scenarios, the increases in tip frequency more compensate for the decreases in

tip amounts, resulting in increases of total tip amounts by 39%. When personal signals are

undisclosed, users also tip more frequently and smaller amounts. However, in this scenario,

the increase in tip incidences just offsets the decrease in tip amounts resulting in a slightly

larger total tip amount.

16We conduct the scenario of personal signals being invisible mainly for comparability reasons. In
practice, this scenario could occur when users can only see the tips they received with a time delay, e.g.,
only see the sum of all tips received at the end of a week or a month.
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Table 5: Tipping Behavior Under Different Information Disclosure Scenarios

(i) (ii) (iii)
Community Signal Personal Signal

Partial Disclosure No Disclosure No Disclosure

Number of Tip Incidences 69.44% 100.02% 11.38%
Amount per Tip -17.99% -30.82% -8.81%
Sum of All Tips 38.97% 38.37% 1.58%

Number of Unique Tippers 48.58% 8.24% -8.98%
Number of Unique Tippees 69.06% 62.49% 1.48%
Number of Unique Tipped Content 61.71% 73.09% 0.66%

Making community signals partially or completely invisible also significantly increases

the number of unique tippers, number of unique tippees, and number of unique tipped

content when community signals are not or only partially disclosed (columns (i) and (ii) in

Table 5). The picture is different when personal signals are undisclosed. Then, the number

of unique tippers declines by 9%, and the numbers of unique tippees and unique tipped

content slightly increase. However, reducing the amount of information users have also

results in a delay in norm formation and/or more uncertainty in the norm even in later

stages. In Figure 8, we plot users’ average posterior norm beliefs for all four scenarios over

time. The variation in average posterior norm beliefs is larger when users do not observe

or only partially observe community signals.

Figure 8: Posterior Norm Over Time
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Comparing the magnitudes of the changes in outcomes in the three scenarios, the

changes are larger when community signals are partially or completely invisible compared

to personal signals being undisclosed. These differences in magnitudes arise because the

number of signals from each source varies significantly in our data; on average, a user re-

ceives 30 community signals for every personal signal received. Thus, while each personal

signal is 5 times more informative (see Table 3), in practice, community signals result in

an effect that is 6 times greater than that of personal signals.17

6.3 Tipping and Norm Stickiness

In this section, we examine how “sticky” social norms and tipping behavior are. More

specifically, we want to understand whether and how quickly platforms can change social

norms and tipping behavior after a norm has been established by making changes to the

information they disclose. Recall from Section 5 that the tipping norm is largely constant

after the first six months of the study period. To investigate whether platforms can influence

the norm and tipping behavior in later stages, we implement the same three scenarios as in

the previous section but only in the second half of the study period, i.e., after the first 11

months of the study period.18 In these three scenarios, tipping information is fully disclosed

(as in our main model) in the first 11 months of the study period. We then compare the

predictions from these three scenarios to those from our main model, where the platform

discloses tipping information.

Figure 9 displays the tipping norm development for the four scenarios over time. As

expected, it takes longer until tipping norms diverge compared to introducing different

information disclosures at the introduction of tipping (see Figure 8) because users have

already accumulated information about tipping amounts and formed a perceived tipping

17The average value of personal signals is 0.94 and the average value of community signals is 0.92. Since
these values are very close, it is less likely that the observed differences are due to the values of the signals.

18For each scenario, we repeat the prediction calculations 100 times (with different error draws) and
then compute the average predictions. We then compare the average predictions from these three scenarios
to the average predictions from our main model.
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norm in the first 11 months. Compared to the main model, the tipping norms under two

of the three information disclosure scenarios, namely, no community signal disclosure and

no personal signal disclosure, are higher at the end of the study period. Partial community

signal disclosure results in a tipping norm that is very similar to the tipping norm from our

main model with full information disclosure. Generally, the differences in tipping norms

between the different scenarios and our main model are smaller compared with the end of

the study period in Figure 8 indicating a degree of stickiness that persists even 11 months

after a change in platform information disclosure.

Figure 9: Posterior Norm Over Time

The results for tipping decisions are shown in Table 6. The percentage changes in Table

6 were calculated based on behavior in the last two months of the study period to describe

tipping after a transition period. When community signals are only partially or not at all

disclosed in the second half of the study period, the resulting changes in tipping behavior

are directionally the same as those shown in Table 5. However, the magnitudes of the

effects are different. Not surprisingly and in line with the results for the tipping norms, the

effects are mostly smaller since the changes were only implemented for half of the study

period. The results for no disclosure of personal signals are also directionally the same as

those shown in Table 5 with the exception of a small increase in the number of unique
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tippers instead of a decrease.

Table 6: Tipping Behavior Under Changes in Information Disclosure in Second Half of
Study Period (Based on Last 2 Months)

(i) (ii) (iii)
Community Signal Personal Signal

Partial Disclosure No Disclosure No Disclosure

Number of Tip Incidences 24.47% 51.32% 11.91%
Amount per Tip -14.61% -21.53% -7.45%
Sum of All Tips 6.28% 18.74% 3.57%

Number of Unique Tippers 22.23% 7.90% 1.85%
Number of Unique Tippees 34.32% 31.15% 8.42%
Number of Unique Tipped Content 33.19% 48.32% 6.16%

So far, we have shown that there is some stickiness in users’ norm belief and tipping

behavior. Next, we want to quantify the amount of stickiness in terms of its medium-

run effects on tipping behavior. We do so as follows: for each of the three scenarios, we

compare users’ tipping behavior for the last two months of the study period for the case

when a scenario was introduced in the middle of the study period versus at the beginning

of the study period. For example, we compare users’ tipping behavior when no community

signal was shown in the second half of the study period (but shown in the first half of

the study period) to the scenario when no community signal was shown during the whole

study period. This comparison measures the (medium-run) stickiness of users having had

full information disclosure in the first half of the study period. The results are presented

in Table 7.

Table 7: Measures of Medium-Run Stickiness (Based on Last 2 Months)

(i) (ii) (iii)
Community Signal Personal Signal

Partial Disclosure No Disclosure No Disclosure

Number of Tip Incidences 21.08% -3.56% 6.31%
Amount per Tip -11.31% 2.27% -3.64%
Sum of All Tips 7.29% -1.64% 2.56%

Number of Unique Tippers 4.23% -5.12% 15.52%
Number of Unique Tippees 5.85% -22.01% 14.65%
Number of Unique Tipped Content 14.49% -14.59% 7.14%
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Let us consider a delayed introduction of no community signal disclosure, i.e., what are

the medium-run consequences of having had community signal disclosure in the first half

of the study period (see column (ii) in Table 7). Here, it is important to keep in mind that

the results in Table 7 were calculated for the last two months of the study period, i.e., after

no community signal disclosure has been in place for 9 months (if it was introduced for 2nd

half of study period) or for 20 months (if it was introduced at the beginning of the study

period). While the consequences of full community signal disclosure in first half of the study

period are of moderate magnitudes for the number of tip incidences, the amount per tip,

and the sum of all tips, the picture looks different when we consider the number of unique

tippers, the number of unique tippees, and the number of unique tipped content. The

stickiness of fewer unique tippers, fewer unique tippees, and fewer unique tipped content,

that is characteristic of tipping behavior under full community signal disclosure, persists

even 9 months after it was dropped. Similar observations of sticky tipping behavior can

also be observed for the other two scenarios shown in columns (i) and (iii) in Table 7.

7 Discussion and Conclusion

Understanding how to influence users’ tipping behavior is crucial for online platforms look-

ing to incentivize content creators and to build an engaged community. It can provide

firms with valuable insights into strategies that can motivate their community’s stakehold-

ers and boost overall engagement. This paper examines the evolution of tipping norms

within an online community, focusing on how users form and update their beliefs about

the tipping norm through Bayesian updating with correlated signals. We study how these

beliefs about the current tipping norm, combined with content quality and other factors,

influence tipping behavior.

Our findings reveal that users’ tipping decisions are significantly shaped by their cur-

rent perception of the tipping norm, which is continually updated based on their personal

36



experiences of receiving tips and observing others’ tip on the platform. Specifically, we

show that that personal experiences with tips received are more informative than observed

tipping behavior in the community, impacting users’ perceptions of the tipping norm signif-

icantly. This dynamic updating process underscores the adaptive nature of user behavior

in response to the evolving tipping environment on digital platforms.

We then analyze the impact of different information provision strategies by partially

or fully removing the visibility of personal and community signals. Our findings indicate

that the visibility of these signals significantly affects tipping behavior. Specifically, when

community tips are not visible, users tend to tip more frequently but smaller amounts,

resulting in a higher total tip amount. These findings suggest that platforms can use tip

visibility as a strategic tool to influence tipping behavior. Further, we also examine how

sticky the perceived tipping norm and tipping behavior is after a change in the platform’s

information disclosure. We find evidence for stickiness even in the medium-run, especially

as it related to the breadth of tipping.

These findings have practical implications for platform managers and content creators,

offering strategies to enhance user engagement and tipping behaviors. For platforms that

receive a portion of the tips as revenue, optimizing tipping behavior can directly impact

their financial sustainability. Using our findings, platforms can ensure a steady stream of

income from tipping activities. Furthermore, our findings suggest that while making tipping

signals not visible can increase the number of tips and total tip amount, it might decrease

the average amount per tip. This has several implications. Platforms need to balance

the visibility of tipping signals to optimize overall tipping behavior while considering the

potential impact on individual content creators’ income. While increasing the frequency of

smaller tips might be financially beneficial for platforms receiving a portion of the tips, it

could lead to less desirable outcomes for content creators if their overall income decreases

due to lower amounts per tip. Platforms should consider their specific circumstances and

design their strategies accordingly.
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Web Appendix A: Derivation of Bayesian Updating Formulas

A.1 Bayesian Updating with Independent Signals

In this section of the appendix, we present the derivation of the Bayesian updating pro-

cess utilized to compute posterior beliefs about the tipping norm, assuming known and

deterministic variances for signals. Here, we model the evolution of beliefs as users receive

personal and community signals, each assumed to be normally distributed.

The initial prior belief about the tipping norm for each user i is represented as a normal

distribution with mean µ0 and variance σ2
0, expressed as µ ∼ N (µ0, σ

2
0).

The personal signals spit,n, for n = 1, . . . , Np
it, where each signal spit,n | µ is normally

distributed with mean µ and variance σ2
p, are represented by:

spit,n | µ ∼ N (µ, σ2
p). (A1)

Similarly, community signals scit,n, for n = 1, . . . , N c
it, where each signal scit,n | µ follows

a normal distribution with the same mean µ but different variance σ2
c , are given by:

scit,n | µ ∼ N (µ, σ2
c ). (A2)

The Bayesian updating rule, combining the prior and the likelihoods of all personal and

community signals, is formulated as:

p(µ | sp1, s
p
2, . . . , s

c
n2

) = p(sp1 | µ)p(sp2 | µ) . . . p(scn2
| µ)p(µ). (A3)

This equation reflects the multiplication of the likelihoods of observing each signal given

the tipping norm µ, with each signal treated as conditionally independent given µ.

Using the normal distribution for p(µ | µ0, σ
2
0), the prior probability density function of

µ, we express it as:

p(µ | µ0, σ
2
0) =

1√
2πσ2

0

exp

[
− 1

2σ2
0

(µ− µ0)
2

]
(A4)

Substituting this into the equation for Bayesian updating, and considering the normal
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distributions of spi and sci , the combined density function becomes:

1

(2π)
n1+n2+1

2

1

(σ2
0)

1
2 (σ2

1)
n1
2 (σ2

2)
n2
2

exp

[
− 1

2σ2
1

n1∑
i=1

(spi − µ)2

]
exp

[
− 1

2σ2
2

n2∑
i=1

(sci − µ)2

]
exp

[
− 1

2σ2
0

(µ− µ0)
2

]
(A5)

∝ exp

[
− 1

2σ2
1

n1∑
i=1

(spi − µ)2 − 1

2σ2
2

n2∑
i=1

(sci − µ)2 − 1

2σ2
0

(µ− µ0)
2

]
(A6)

= exp

−
n1∑
i=1

spi
2 + n1µ

2 − 2µ
n1∑
i=1

spi

2σ2
1

−

n2∑
i=1

sci
2 + n2µ

2 − 2µ
n2∑
i=1

sci

2σ2
2

− µ2 + µ2
0 − 2µµ0

2σ2
0

 (A7)

Simplifying the exponentials and combining terms involving µ, we derive the expression:

exp

−µ2

2

(
1

σ2
0

+
n1

σ2
1

+
n2

σ2
2

)
+ µ


n1∑
i=1

spi

σ2
1

+

n2∑
i=1

sci

σ2
2

+
µ0

σ2
0

+


n1∑
i=1

spi
2

σ2
1

+

n2∑
i=1

sxi
2

σ2
2

+
µ2
0

σ2
0




(A8)

Completing the square allows us to equate the above expression to the standard form

of a normal distribution in terms of µ. By matching the coefficients, we can directly derive

the corresponding mean and variance:

p(µ | sp1, s
p
2, . . . , s

c
n2

) ∝ exp

[
− 1

2σ2
t

(µ− µt)2
]
∝ exp

[
−µ

2 − 2µµt + µ2
t

2σ2
t

]
(A9)

then:

− µ2

2σ2
t

= −µ
2

2

(
1

σ2
0

+
n1

σ2
1

+
n2

σ2
2

)
(A10)

=⇒ σ2
t =

(
1

σ2
0

+
n1

σ2
1

+
n2

σ2
2

)−1
(A11)

and

2µµt2σ
2
t = µ


n1∑
i=1

spi

σ2
1

+

n2∑
i=1

sci

σ2
2

+
µ0

σ2
0

 (A12)
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=⇒ µt = σ2
t


n1∑
i=1

spi

σ2
1

+

n2∑
i=1

sci

σ2
2

+
µ0

σ2
0

 (A13)

A.2 Bayesian Updating with Correlated Signals

If the signals are not independent from each other, the probability p(sp1, s
p
2, . . . , s

c
n2
| µ) does

not break into separate probabilities anymore. Instead, we have to use the joint probability

of the signals, i.e., the multivariate normal distribution:

p(sp1, s
p
2, . . . , s

c
n2
| µ) =

(
1

(2π)n/2

)
(det Σ)−1/2 exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)
(A14)

where Σ is the covariance matrix. Its diagonal elements are the variances of the signals

and the off-diagonal elements are the covariances between the signals. In the case of a

multivariate normally distributed posterior, it is more convenient to write the equations

using precision notation. Let Ω = Σ−1, with ωij representing the precision between signals

i and j. This structure can account for the correlations between signals originating from

the same type of source as well as between signals from different sources. We assume that

the first Mp
it =

∑t
k=1N

p
ik rows and columns contain the precision of personal signals, and

the next M c
it =

∑t
k=1N

c
ik rows and columns contain the precision of community signals,

forming an (Mp
it + M c

it) × (Mp
it + M c

it) precision matrix. Note that the diagonal elements

corresponding to the first Mp
it signals are equal since all personal signals have the same

variance, and similarly, the diagonal elements for the next M c
it signals are equal.

We now calculate the posterior distribution. Signals from a multivariate normal distri-

bution are conjugate with a multivariate normal prior, and, in our context, we can simplify
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the posterior distribution even further because the signals all have the same mean µ:

p(µ | spi1, sci1, . . . , sMp
it+M

c
it

) ∝ exp

−1

2

Mp
it+M

c
it∑

k,z=1,1

(sik − µ)ωk,z(siz − µ)− ω0

2
(µ− µ0)

2


= exp

−1

2

Mp
it+M

c
it∑

k,z=1,1

ωz,k(siksiz − µ(sik + siz) + µ2)− 1

2
ω0(µ

2 − 2µµ0 + µ2
0)


= exp

−µ2

2

ω0 +

Mp
it+M

c
it∑

k,z=1,1

ωkz

+
µ

2

2ω0µ0 +

Mp
it+M

c
it∑

k,z=1,1

ωk,z(sik + siz)


− 1

2

ω0µ
2
0 +

Mp
it+M

c
it∑

k,z=1,1

ωk,zsiksiz

 (A15)

After completing the square in the expression for µ, we derive the precision ωt and the

mean µt of the posterior distribution as

ωit = ω0 +

Mp
it+M

c
it∑

k,z=1,1

ωk,z , (A16)

µit =

ω0µ0 +
Mp

it+M
c
it∑

k,z=1,1

ωk,z(sik+siz)

2

ω0 +
Mp

it+M
c
it∑

k,z=1,1

ωkz

. (A17)

A.3 Bayesian Updating with Desired Correlation Structure

To construct Ω in each time period t for each user i, we need to account for all signals from

the personal and community sources across multiple time periods, i.e.,

ψit = [Spi1,1, S
p
i1,2, . . . , S

p
i1,Np

i1
, Spi2,1, S

p
i2,2, . . . , S

p
i2,Np

i2
, . . . , Spit,1, S

p
it,2, . . . , S

p
it,Np

it
,

Sci1,1, S
c
i1,2, . . . , S

c
i1,Nc

i1
, Sci2,1, S

c
i2,2, . . . , S

c
i2,Nc

i2
, . . . , Scit,1, S

c
it,2, . . . , S

c
it,Nc

it
] (A18)

where ψit is a vector of size (
∑t

k=1N
p
ik +

∑t
k=1N

c
ik)× 1.

Ω is composed of several blocks, each representing the interactions between signals of

the same type within the same day, different types within the same day, and signals across

different days.

• The diagonal elements represent the precision of personal and community signals and
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are denoted by ωp and ωc respectively.

• The off-diagonal elements within the same day correspond to the partial correlations

between signals of the same type within the same day, given by λp for personal signals

and by λc for community signals. The correlation across signal types within the same

day is denoted as λpc.

• The off-diagonal elements across different days decay according to the decay rates δp,

δc, and δsc. The decay is applied exponentially based on the time difference, e.g., for

two personal signals between different days t and t′, the element corresponding to the

partial correlation between signals is given by δ
|t−t′|
p λp.

The Ω matrix is of size (
t∑

k=1

Np
ik +

t∑
k=1

N c
ik)× (

t∑
k=1

Np
ik +

t∑
k=1

N c
it) with rows and columns

corresponding to signals of ψit.

Ωt =

[
Ωp ΩT

pc

Ωpc Ωc

]
(A19)

Ωp and Ωc correspond to the precision of signals and the within-source correlations

among signals and Ωpc corresponds to the correlations between signals from different

sources. Ωp and Ωc have a t × t structure of smaller blocks with rows and columns corre-

sponding to time periods 1, . . . , t:

Ω|ω,λ ∈ {Ωp|ωp,λp ,Ωc|ωc,λc} =


Ω11 δ1Ω12 · · · δtΩ1t

δ1Ω21 Ω22 · · · δt−1Ω2t

...
...

. . .
...

δtΩt1 δt−1Ωt2 · · · Ωtt

 (A20)

The diagonal Ωkk blocks capture the precision and correlation of the Nik ∈ {Np
ik, N

c
ik}

signals received from a source in each time period. Thus, each Ωkk is a Nik × Nik matrix

with diagonal elements ω and off-diagonal elements λ. The off-diagonal Ωzk matrix blocks

are λJ̇Niz×Nik
matrices, J being an all-ones matrix:

Ωkk =


ω λ · · · λ

λ ω · · · λ
...

...
. . .

...

λ λ · · · ω


Nik×Nik

, Ωzk =


λ λ · · · λ
...

...
. . .

...

λ λ · · · λ


Niz×Nik

(A21)

Ωpc captures the correlation between signals coming from different sources. This matrix

also consists of t× t blocks, with blocks representing the partial correlation between signals
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of different types within and across time periods. The correlation between two signals is

proportional to λpc, decreasing at an exponential rate of δpc as the time difference between

the two signals increases. Formally, the matrix consists of blocks matrices of size Np
iz×N c

ik

for personal signals of time period z and community signals of time period k with all

elements equal to δ
|z−k|
pc λpc:

Ωpc = λpc


JNp

i1×Nc
i1

δ1pcJNp
i1×Nc

i2
· · · δtpcJNp

i1×Nc
it

δ1pcJNp
i2×Nc

i1
JNp

i2×Nc
i2

· · · δt−1pc JNp
i2×Nc

it

...
...

. . .
...

δtpc JNp
it×Nc

i1
δt−1pc JNp

it×Nc
i2
· · · JNp

it×Nc
it

 (A22)

We now proceed to calculate the posterior mean and precision given the structure for

Ω, beginning with ωt. First, we calculate the sum of elements in Ωp and Ωc. We illustrate

the calculations for Ωp; the process for Ωc is analogous. The sum of the diagonal elements

Ωkk in Ωp can be expressed as:

Np
ik × ωp + (Np

ik
2 −Np

ik)× λp (A23)

and the sum of the off-diagonal elements Ωzk as:

Np
iz ×N

p
ik × λp. (A24)

Therefore, the total sum for Ωp is given by

ωp

t∑
k=1

Np
ik + λp

t∑
k=1

(Np
ik

2 −Np
ik) + λp

t∑
k,z=1,k 6=z

δ|k−z|p Np
iz ×N

p
ik (A25)

The total sum for Ωc follows the same structure. For the cross-term Ωpc, the sum of

elements is straightforward:

λpc

t,t∑
k,z=1,1

δ|k−z|pc Np
iz ×N c

ik. (A26)

Consequently, the posterior precision ωt can be calculated as:
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ωt = ω0 + ωp

t∑
k=1

Np
ik + ωc

t∑
k=1

N c
ik

+ λp

t∑
k=1

(Np
ik

2 −Np
ik) + λp

t∑
k,z=1,k 6=z

δ|k−z|p Np
iz ×N

p
ik

+ λc

t∑
k=1

(N c
ik

2 −N c
ik) + λc

t∑
k,z=1,k 6=z

δ|k−z|c N c
iz ×N c

ik

+ 2λpc

t∑
k,z=1,1

δ|k−z|pc Np
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N c
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ik (A27)

Next, we turn to the calculation of the posterior mean µt. First, we calculate the

second term for Ωp; the calculations for Ωc will be similar. Let Spik =
Np

ik∑
r=1

spik,r, the sum of

the personal signal values on day k. For the diagonal blocks Ωp
kk at each time k in Ωp, we

have:

Np
ik∑

r,q=1,1

ωrq(s
p
ik,r + spik,q) =2ωps

p
ik,1 + λp(s

p
ik,1 + spik,2) + λp(s

p
ik,1 + spik,3) + · · ·+ λp(s

p
ik,1 + sp

ik,Np
ik

)+

λp(s
p
ik,2 + spik,1) + 2ωpspik,2 + λp(s

p
ik,2 + spik,3) + · · ·+ λp(s

p
ik,2 + sp

ik,Np
ik

)+

...

λp(s
p
ik,Np

ik
+ spik,1) + λp(s

p
ik,Np

ik
+ spik,2) + · · ·+ 2ωps

p
ik,Np

ik

=2ωpSpik + (Np
ik − 2)λpSpik +Np

ikλpS
p
ik

=2ωpSpik + 2(Np
ik − 1)λpSpik. (A28)
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For the off-diagonal blocks Ωp
zk in Ωp, we have:

Np
iz∑

r=1

Np
ik∑

q=1

ωrq(s
p
iz,r + spik,q) =λp(s

p
iz,1 + spik,1) + λp(s

p
iz,1 + spik,2) + · · ·+ λp(s

p
iz,1 + sp

ik,Np
ik

)+

λp(s
p
iz,2 + spik,1) + λp(s

p
iz,2 + spik,2) + · · ·+ λp(s

p
iz,2 + sp

ik,Np
ik

)+

...

λp(s
p
iz,Np

iz
+ spik,1) + λp(s

p
iz,Np
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p
iz,Np

iz
+ sp

ik,Np
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=Np
ikλpS

p
iz +Np

izλpS
p
ik. (A29)

Thus, the sum
∑

zk=1,1

ωzk(siz+sik)
2

for Ωp is:

ωp

t∑
k=1

Spik + λp

t∑
k=1

(Np
ik − 1)Spik +

λp
2

t∑
k,z=1,k 6=z

δ|k−z|p (Np
ikS

p
iz +Np

izS
p
ik) (A30)

.

Because of symmetry,
t∑

k,z=1,k 6=z
δ
|k−z|
p (Np

ikS
p
iz +Np

izS
p
ik) = 2

t∑
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δ
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p Np

ikS
p
iz. Break-

ing the second sum and combining the. parts with the first and third sums will give:
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ikS

p
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izS
p
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.

The sum related to Ωpc is given by:

Np
iz∑

r=1

Nc
ik∑

q=1

ωrq(s
p
iz,r + scik,q) = λpc

t∑
k,z=1
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p
iz +Np

izScik) . (A32)

Finally, we combine these terms to calculate the posterior mean µt:
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µit =
1
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. (A33)

to compute the posterior more efficiently in the optimization process, we construct the

terms with the form
t∑

k,z=1

(
δ
|k−z|
p AB

)
, using

t∑
k,z=1

(
δ
|k−z|
p Np

ikS
p
iz

)
as an example by breaking

it as:
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(A34)

This can be simplified as:

=
t−1∑
k,z=1

(
δ|k−z|p Np

ikS
p
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+ δtpS

p
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At each time t, the
t∑

k,z=1

(
δ
|k−z|
p Np

ikS
p
iz

)
can be written as a function of its value at time

t− 1. For t = 1, it will be Np
i1S

p
i1. Thus the sum can be re-written as

t∑
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(
δ|k−z|p Np

ikS
p
iz
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p
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)
(A36)
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Web Appendix B: Supplements for Predictive Exercises

We present the average predicted number of tipping incidences in a day and the predicted

total amount of tips given by all users in a day in Figure B-1. In Figure B-1(a), the

number of tip incidences is largely stable over time. We observe a similar pattern for the

total amount of tips given by all users over time with a moderate increase in the last few

months in Figure B-1(b)

(a) Predicted Number of Tip Incidences

(b) Predicted Total Tips Amount

Figure B-1: Predicted Number of Tip Incidences and Total Tips

51


	Introduction
	Relevant Literature
	Tipping
	Social Norms
	Special Interest Communities

	Data
	Data Collection, Cleaning, (Re)Construction
	Data Description

	Model and Estimation
	Model
	Assumptions
	Utility Function
	Perceived Tipping Norm and Signals
	Bayesian Updating with Correlated Signals

	Estimation

	Results
	Model Fit

	Prediction Exercises
	Tip Decomposition
	Information Disclosure
	Tipping and Norm Stickiness

	Discussion and Conclusion
	References
	: Derivation of Bayesian Updating Formulas
	A.1 Bayesian Updating with Independent Signals
	A.2 Bayesian Updating with Correlated Signals
	A.3 Bayesian Updating with Desired Correlation Structure

	: Supplements for Predictive Exercises

