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Abstract

Commercial food waste presents a major challenge to urban sustainability. In response, digital plat-
forms have emerged that create new marketplaces for food retailers (e.g. bakeries) to sell surplus
inventory at a discount. We consider how a key market design lever — the platform’s pricing policy
— influences seller entry and food waste diverted (i.e., aggregate sales volume) in a major surplus
food marketplace. We estimate a structural model of a two-sided marketplace that captures both
spatially differentiated consumer demand and sellers’ market entry decisions, using hourly inventory
data from 465 participating food retailers across four U.S. urban centers (Manhattan, Boston, San
Francisco, and Seattle). Central to our methodology is a new estimation technique for sellers’ en-
try costs grounded in discrete optimization, which dramatically speeds up estimation compared to
standard nested fixed-point methods. We find significant heterogeneity across the four cities in con-
sumers’ travel costs and sensitivity to sellers’ on-platform ratings. Counterfactual results show that
seller participation is more price-elastic than consumer demand, implying that supply constraints
primarily determine the volume of food waste diverted by the marketplace. Delegating price control
to sellers invites excessive competition and induces exit, leading to a sharp contraction in equilibrium
sales volume. Overall, our findings support platform control of prices in surplus food marketplaces —
provided discounts are not too steep — and offer guidance to platform operators seeking to stimulate

seller entry and curb food waste.
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1 Introduction

Food waste is a pressing global issue, with approximately one-third of all food produced—around 1.3
billion tons—going to waste each year, and costing as much as $400 billion annually (WRAP, 2015).
This waste occurs at every stage of the supply chain, from farms discarding cosmetically imperfect
produce to retailers and restaurants disposing of unsold inventory (Akkag and Gaur, 2022). In the
United States, 31% of the food waste occurs at the retail and consumer levels, highlighting a need for
better redistribution systems to reduce food waste (U.S. Department of Agriculture, 2025). Beyond the
economic costs, food waste contributes to environmental degradation through greenhouse gas emissions
and diversion to landfills, undermining the sustainability of urban centers where consumption and waste

are most concentrated.

The challenge of reducing urban food waste has been met by the emergence of new two-sided platforms
that enable food retailers (e.g., restaurants, bakeries, and coffee shops) to sell excess food in a “surplus
market”, where consumers can purchase items — usually at a significant discount — that would otherwise
be discarded. For instance, on the platform Too Good to Go, bakeries can offer unsold pastries in the
surplus market at a fraction (e.g., %) of their original price; the platforms Food For All, Karma, Olio,
and Phenix operate similarly, although with some variation in the precise market designs. The promise
of these platforms is that they offer a market-based solution to food waste by creating value for all
parties: Retailers can recover costs on inventory that would otherwise have little salvage value, and

consumers can access quality food at reduced prices.

Surplus food marketplaces, whose mission is to minimize food waste at scale (Too Good To Go, 2024),
have been shown to exhibit indirect network effects (Richards and Hamilton, 2018). This suggests that
participation from a broad set of retailers is especially important for these platforms to achieve the

I However, the decision to participate is non-

sales volume necessary to meaningfully reduce waste.
trivial for retailers due to a challenging profitability environment — consumers expect steep discounts
on surplus food, which puts pressure on prices, and perishability limits retailers’ on—hand inventory,
further restricting revenue. Additionally, despite sunk production, entering and operating in these
marketplaces is not costless for retailers.? As a result, making entry sufficiently attractive for food

retailers requires careful market design.

A platform’s pricing policy is an especially important design lever for surplus food marketplaces. In

addition to shaping consumer demand, the platform’s adopted discount rate plays a critical role in

!See Armstrong (2006) for a general discussion of network effects in two-sided markets.

2Examples of fixed and marginal costs include platform subscription fees, staff training, packaging, integration into existing
point-of-sale and inventory systems, and disruptions to regular store operations.



determining supply-side entry into the marketplace, given the notoriously tight margins in food retail
(Restaurant365, 2023). In practice, platforms vary in their pricing policies — for example, Too Good to
Go uniformly mandates that food retailers discount items by two-thirds of their retail value, whereas
Flashfood grants retailers more flexibility in pricing, although still imposes a minimum discount of 50%

(Vachon, 2025).

Further, given potential heterogeneity in retailers’ costs, a natural question platforms face is whether
to delegate price control to retailers, so to lift their margins and increase the appeal of joining the
marketplace. However, the impact of delegating pricing on the marketplace’s ability to divert food
waste is ambiguous, because the ensuing price competition is likely to shift both consumer demand and
retailers’ entry decisions in equilibrium. Consequently, determining the net effect of price competition
requires carefully accounting for its impact on both sides of the marketplace. Moreover, because urban
characteristics may shape consumer demand patterns (e.g., by influencing travel costs), the performance

of different pricing mechanisms is likely to vary across geographic markets.

1.1 Contributions

This paper examines the role of a platform’s pricing policy and the urban environment in shaping
outcomes in a surplus food marketplace. Specifically, given the importance of retailer participation

and waste diversion, we ask:

1. How do consumer preferences in surplus food marketplaces vary across urban environments?
2. Do demand- or supply-side effects dominate in response to market-wide price changes?

3. How does permitting seller price competition impact seller entry and aggregate sales volume?

We address these questions by estimating a structural model of a two-sided marketplace where both
sellers and consumers are spatially differentiated. The model captures the role of price and urban
characteristics in shaping both consumer demand and sellers’ strategic entry decisions. We focus on
aggregate sales volume as our outcome of interest, which serves as a proxy for the total amount of food

waste diverted as a result of transactions in the marketplace.

We estimate our model using a detailed dataset from a major platform that operates surplus food
marketplaces internationally, focusing on four U.S. urban centers: Boston, Manhattan, San Francisco,
and Seattle. The data comprises hourly observations of sellers’ surplus inventory levels, prices, ratings,
and other attributes over a 10-week period from March to May 2024, covering 465 participating retailers
and about 653,000 observations at the seller-hour level. This temporal and spatial granularity allows us

to observe detailed store-level operations—specifically, the depletion and replenishment of inventory—as



well as spatial variation in consumer demand patterns. We supplement this platform data with Google
Places information on all food-related establishments (whether participating in the marketplace or not)
and US Census (American Community Survey) data on local demographics, which helps us account

for urban characteristics that influence demand and entry.

Our model aims to capture both sides of the market: Consumers’ food purchase choices and sellers’
entry decisions. On the demand side, we model consumer arrivals as varying in space and time.
Conditional on arrival, consumers’ seller choices follow a multinomial logit (MNL) model that accounts
for consumer-seller distances and seller attributes. In estimating the demand model, we instrument for
consumer-seller distances to address potential endogeneity in sellers’ locations, since sellers’ decision to
enter the marketplace may depend on local unobserved demand shocks. On the supply-side, we model
seller entry as a non-cooperative game where each seller makes a strategic entry decision based on their
expected profit in equilibrium, which depends on both consumer demand and the entry decisions of

competing sellers.

We contribute to the literature on empirical models of market entry by proposing a new estimation
technique that uses integer optimization to recover sellers’ cost parameters in the spirit of generalized
methods of moments (Hansen, 1982). At a high level, our approach has two steps. First, we use a
generic random forest to construct a large pool of “candidate equilibria”, which are binary vectors
that can be interpreted as plausible solutions to the sellers’ entry game. Second, we solve a large-scale
integer optimization problem that matches moments by jointly searching over the pool of candidate
equilibria and the set of unknown parameters. To investigate its performance, we compare our approach
to a straightforward implementation of a nested-fixed point (NFXP) algorithm (Rust, 1987) within a
simulated methods of moments (McFadden, 1989) framework. Numerical results show our method
dramatically speeds up estimation compared to the NFXP algorithm — in some synthetic instances, by
an order of magnitude — which allows our model to scale to a larger number of covariates and capture

a richer description of market behavior.

Our estimates reveal substantial heterogeneity in consumers’ sensitivity to distance and sellers’ ratings
across markets. Consumers in San Francisco and Seattle face travel costs of close to $1/km, compared
to $0.36/km and $0.48/km in Manhattan and Boston. Cities with lower travel costs see far greater
consumer sensitivity to ratings: A one-star increase in a seller’s on-platform rating is valued at roughly
$4 to $6 in Manhattan and Boston, but less than $2 in San Francisco and Seattle. These results
suggests that food retailers in commercially dense and accessible urban centers face more competitive
pressure to maintain strong on-platform reputations, and consequently the impact of the platform’s

pricing policy may vary substantially across markets.



We use our estimates to address two counterfactuals. First, we consider uniform pricing, where the
platform mandates a common discount rate throughout the market, and vary the discount rate from
0 to 100%. We find that the supply response (i.e., changes in seller entry) dominates the effect on
consumer demand for a wide range of prices; in most markets, supply is more elastic for all discount
rates above 25-30%. This suggests that the total food waste diverted by the marketplace is dictated
primarily by seller participation, and that deep discounts on surplus food may be highly sub-optimal.
In the second counterfactual, we consider delegated pricing, where sellers to engage in Bertrand-Nash
price competition, rather than adhering to a platform-specified uniform discount. Under delegated
pricing, sales volumes contract sharply in all markets, potentially by up to 58 — 83%, suggesting that
permitting individual sellers to set prices can harm the marketplace by inviting excessive competition,

eroding profit margins and driving sellers to exit.?

Overall, our findings provide guidance to designers of surplus food marketplaces seeking to stimulate
seller participation and increase the volume of food waste diverted. Our results provide support for
platforms maintaining control over market prices — which relieves sellers of competitive pressure — but
warns against mandating excessively steep discounts due to the harms to seller profitability. More
broadly, the results illustrate that a platform’s choice of pricing policy is central to the effective design

of surplus food marketplaces.

The remainder of the paper is organized as follows. Section 2 provides an overview of the marketplace
and the data. Section 3 develops our two-sided structural model of consumer demand and seller
entry decisions. Section 4 discusses demand estimation, including the instrument for consumer—seller
distances. Section 5 presents our discrete optimization method for estimating sellers’ cost parameters.
Section 6 reports parameter estimates and model fit, and Section 7 presents the two counterfactual

analyses. Section 8 concludes.

1.2 Related Literature

This paper contributes to the literature on empirical models of market entry, demand estimation with

spatially differentiated products, and market-based solutions for reducing food waste.

Empirical models of market entry. Foundational work on market entry includes Bresnahan and
Reiss (1991), Berry (1992), Mazzeo (2002), and Seim (2006). We refer the reader to Berry and Reiss
(2007) for a review of seminal work on estimating entry models and Aguirregabiria and Suzuki (2016)

for a review of entry under spatial competition.

30ur findings align with the theoretical analysis in (Cachon et al., 2025), who provide conditions under which decentralized
pricing can harm platform profits by suppressing seller prices.



We contribute to the operations management literature that estimates a structural model of market
entry. For example, Wang et al. (2023) investigate entry of generic drug manufacturers. Following
Berry (1992), they model each firm’s profit as a linear function of the number of competitors, whereas
we allow entry to modify consumers’ choice sets within a logit-based demand model, similar to Lee and

Musolff (2023).

In general, estimating entry models is computationally challenging because players’ decisions are binary
(i.e., to enter or not), and payoffs depend on the binary decisions of other players, leading to fixed-point
equilibrium conditions with discrete variables that must be enforced within the estimator (Bajari et al.,
2007). Prior work has addressed these challenges by adopting a policy function approach, which treats
entry decisions as reduced-form functions of observables (Jia, 2008; Collard-Wexler, 2013). A limitation
of policy functions is that they approximate rather than explicitly model equilibrium behavior. A
more precise alternative is to explicitly enforce the equilibrium and optimize over the parameter space
through a nested fixed-point (NFXP) algorithm (Ciliberto and Tamer, 2009; Ciliberto et al., 2021; Lee
and Musolff, 2023). However, NFXP methods are known to be extremely computationally expensive
due to the need to re-solve for the equilibrium at each candidate parameter vector (Su and Judd, 2012),

and can become intractable for even moderately sized parameter spaces.

To overcome the computational challenges of NFXP methods, we develop a new estimation technique
for entry models using the paradigm of integer optimization (Wolsey, 2020). Like NFXP, our approach
enforces equilibrium conditions exactly, but eliminates the need to iteratively re-solve for the equi-
librium by directly embedding the relevant equilibrium conditions into the optimization model. This
formulation allows for a more scalable estimation process and enables the incorporation of additional

covariates that would be nonviable under traditional NFXP.

Demand estimation with spatially differentiated products. Our demand model follows the
celebrated discrete choice literature for differentiated products (Berry et al., 1995; Nevo, 2001). To
account for heterogeneity in consumer preferences over product locations, Davis (2006) and Thomadsen
(2007) incorporate geographic distance into consumer utility. Spatial demand models have also been
used in the context of urban mobility (Kabra et al., 2020; He et al., 2021; Stourm and Stourm, 2024; Liu
et al., 2024) and public health (Bravo et al., 2024). While these papers differ in application, they share

with our work a focus on how the spatial distribution of products influence consumer demand.

We extend the literature on spatial demand models by addressing endogeneity in consumer-seller dis-
tances, since seller entry may be influenced by unobserved local market conditions. To our knowledge,
the only other study to consider endogeneity in consumer-seller distance is Cao et al. (2024), who

construct instruments based on the income distribution within fixed radii from the city center. In



contrast, we instrument for distance using historical landmarks (i.e., city halls and courthouses), whose
locations are plausibly tied to the emergence of long-standing commercial districts (for example, due
to historical land use patterns) but are unlikely to be correlated with modern consumer preferences
or platform-specific demand shocks. In addition to addressing distance endogeneity, we extend the
literature on spatial demand models by integrating our demand estimates into a supply-side model of
seller profit and entry, allowing us to investigate how geographic variation in demand shapes market

structure in urban settings.

Market-based solutions for reducing food waste. Food waste arises at every stage of the supply
chain, motivating a rich literature on questions related to incentives, coordination, and innovative
business models for waste mitigation (Akkag and Gaur, 2022). Considerable prior work has focused
on operational aspects of food waste reduction in primary markets, including restaurants (Astashkina
et al., 2024), commercial kitchens (Yu et al., 2023), and grocery retail (Belavina et al., 2017; Astashkina
et al., 2019; Belavina, 2021; Park et al., 2022; den Boer et al., 2022; Jain et al., 2023; Sanders, 2024;
Zhou et al., 2024a; Kazaz et al., 2025).

Our work contributes to an emerging literature that examines how new marketplaces can reduce waste
by more efficiently re-allocating surplus food that would otherwise be discarded (Richards and Hamil-
ton, 2018; Makov et al., 2020; Manshadi and Rodilitz, 2020; de Almeida Oroski and da Silva, 2023;
Alptekinoglu and Benade, 2024). Within this stream, Yang and Yu (2025) analyze the platform Too
Good to Go and compare the performance of various clearance policies with respect to waste reduction
and store profit. Zhou et al. (2024b) study the same platform, focusing on the optimal bundling of
surplus inventory into discrete units for sale (“surprise bags”). Our paper complements this work by
empirically investigating how the platform’s policies regarding pricing and competition shape seller

participation and waste diversion.

More broadly, our work contributes to a growing literature that uses empirical methods to study the
operations of digital platforms, with contextual areas including delivery and urban mobility (Lu et al.,
2023; Zhang et al., 2023; Cui et al., 2024; Clyde et al., 2024; Guo et al., 2025), labor marketplaces (Cao
et al., 2022; Besbes et al., 2023), home-sharing (Cui et al., 2020a), social media (Zeng et al., 2023, 2024;
Hu et al., 2024), and online retail (Cui et al., 2019; Zhang et al., 2019; Cui et al., 2020b; Bai et al.,
2022a,b; Calvo et al., 2023; Long et al., 2024; Jiang et al., 2025).



2 Data and Marketplace Overview

Our study focuses on four urban centers in the U.S.: Boston, Manhattan, San Francisco, and Seattle.
For each of these markets, we obtained data from three sources: (1) Too Good To Go, a digital platform
that operates surplus food marketplaces, (2) the Google Places API (Google Maps Platform, 2025),
which provides information on the commercial environment, and (3) the American Community Survey
(U.S. Census Bureau, 2022), which provides demographic data. We provide an overview of each of

these datasets next, focusing on the platform.

2.1 Platform Data

To Good to Go is a major two-sided marketplace for connecting food retailers with consumers to reduce
food waste. The platform claims to be the world’s largest marketplace for surplus food with a total of
100 million users (Too Good To Go, 2024). Each day, participating retailers (such as bakeries, cafes
and restaurants) package unsold inventory into “bags”, which are listed and sold at a significantly lower
price — currently % of the bag’s retail value in our focal markets. Consumers can reserve and purchase
bags directly through the platform’s app, and must travel to the store to pick up their purchase in-
person. Prior to making a purchase, consumers can view several store features, including the store’s
rating, distance, pickup time window, bag price, and the number of bags available. Figure 11 in the

Appendix shows an example of a consumer’s view of the app.

The dataset comprises hourly, store-level observations from each of the four cities collected over a
64-day period from March 1 to May 13 in 2024.* Bags sold on the platform are grouped into four
categories: Meals, Baked Goods, Groceries, and Other. Our analysis focuses on the largest category,
Baked Goods, which accounts for 38% of all stores. In total, the dataset contains 653,000 observations
from 465 stores. Summary statistics are presented in Table 1.

Table 1: Summary Statistics (Baked Good Category).

Manhattan San Francisco Boston Seattle Total

Number of Bakeries 284 94 34 53 465

Number of Observations 418,473 128,623 52,719 53,484 653,299
Quantity Sold (Bags) 34,827 6,243 2,896 2,575 46,541
Revenue ($) 188,189 31,658 14,882 14,809 249,539

Each observation contains information on the store’s name, product category, geographic location
(i.e., lat/long coordinates), pickup time, retail value, price, current inventory level, store ratings, and

the stock-out time (if any). Table 8 in Appendix A shows an example of three observations from a

4We collected data over this time period for Manhattan, San Francisco, and Boston. For Seattle, the data spans a 45-day
period within this time period.



three-hour window for a single store selling baked goods. We briefly comment on the key variables

next.

Inventory. Store inventory is measured by the number of bags listed on the platform — Figure 1 depicts
the depletion and replenishment of inventory for two example stores. Because inventory fluctuates
hourly, customers arriving to the app at different points in time may see different options, motivating
us to model consumers’ choice sets as being dynamic. Stock-outs are frequent, with stores lacking
inventory in 63% of observations. Higher-rated stores are stocked-out more frequently: Those above
the median rating in the market have no inventory in 82% of observations, compared to 76% for those
below the median. Figure 1 shows two Manhattan bakeries with similar daily inventory but notable
differences in depletion rates. This highlights heterogeneity among sellers: Some stores face chronic
excess demand, while other stores are unable to clear their inventory, creating inefficiencies that limit
the platform’s ability to reduce food waste.

Figure 1: Example of Inventory Cycles For Two Stores in Manhattan.
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Store B (Rating: 4.0/5.0).
Retail value and price. On the platform, stores report the retail value of a bag, and the selling price
is automatically set to % of that value, which typically does not change from day to day.” We refer
to the ratio between the platform price and retail value as the price ratio. The left panel of Figure 2
shows a weak correlation between price and sale probability, suggesting the presence of confounding

factors, which may include consumers’ travel costs and store ratings.

5Over our 10-week observation period, only 0.8% of bakeries across the four cities had at least one change of price.



Sellers’ on-platform ratings. Empirically, we observe a strong positive correlation between a store’s
rating on the platform and the probability of a sale in any given hour (right panel of Figure 2),
consistent with prior literature documenting positive associations between customer ratings and sales

performance (Chevalier and Mayzlin, 2006; Anderson and Magruder, 2012).

Figure 2: Sales Probability vs. Price and Ratings in Manhattan.
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Notes: The vertical axis represents the average probability that a store makes a sale in a given
hour, binned by seller price and rating.

Location and distance. Although purchases occur on a digital platform, customers must collect
their items in-person, making travel costs a potentially important driver of consumer demand. The
platform’s default search radius reinforces this (Figure 11). In Manhattan, for instance, sales generally
correlate with population density (Figure 3), with strong demand in dense areas like the Upper East
Side. These patterns motivate incorporating population density and consumer—seller distances into the

demand model, using census tract fixed effects and instrumental variables to address endogeneity.
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Figure 3: Average Daily Sales and Population Density in Manhattan.
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2.2 Commercial and Demographic Data

We used the Google Places API (Google Maps Platform, 2025) to collect data in March 2024 across
the four markets, which covers all relevant stores listed on Google Maps, including both participants
and non-participants on the platform. Within the Google API, we extract all establishments that have
the assigned place type of “bakery” or “coffee shop”. Each observation contains store attributes such
as geographic location, Google rating, operating hours, and a brief text description of the store. This
data is primarily used to estimate the cost functions underlying stores’ entry decisions (see Section 5).
We also draw on the 2022 American Community Survey (ACS) 5-Year Estimates (U.S. Census Bureau,
2022), a comprehensive dataset produced by the U.S. Census Bureau that provides demographic and
socio-economic information at the census tract level. In particular, we use data on household income and
population density to capture spatial heterogeneity in consumer demand (see Section 3.1). Appendix

B presents descriptive statistics for the Google Places and ACS variables.

3 Model

This section presents our structural model of the two-sided marketplace. Section 3.1 develops the

model for consumer demand, defined by both consumers’ arrivals and choices. Section 3.2 develops the

11



supply-side model of sellers’ costs and market entry decisions. Section 3.3 discusses market equilibrium
and outlines the key assumptions that make estimation tractable. The model described below is for a

single market, we estimate it separately for each of the four markets in our sample.

3.1 Consumer Arrivals and Choice

On the demand-side, we model consumer behavior in two stages. The first is an arrival model, which
captures the base market size — specifically, the number of consumers at a given location intending to
make a purchase. The second component is a choice model, which characterizes the probability that
each of these consumers purchases a bag from each seller.’ The model explicitly accounts for both
temporal and spatial heterogeneity in demand. Time is indexed by the pair (t,7) € T x .7, where
t denotes a granular time period (e.g., hour of the day) and 7 represents a higher-level time period
(e.g., day of the month). This distinction allows us to capture temporal variation in market conditions
at different levels of aggregation. Consumers are spatially heterogeneous and distributed over a finite
number of locations, indexed by the set £. The consumer population arriving at location £ € £ during
market (¢,7) is then given by

)\ET(Q) =ap + O‘Tyzﬂ

where sz is a vector of location- and time-specific covariates (e.g., population density, time of day

indicators) and « is the corresponding parameter vector.

Consumers’ choice sets are shaped by sellers’ entry decisions. Let J denote the set of all possible
sellers. Let ¢ C {0, 1}‘j | denote the strategy profile of all sellers, where 1; = 1 if seller j enters and
¥; = 0 otherwise. Let J*(¢) = {j € J : ¢; = 1} be the set of stores that enter the market. The
deterministic component of consumer utility for seller in the market j € J+ for consumers at location
¢ is then given by

Vie(B) = Bo + B xjo + 00 + &,

where X is a vector of seller- and consumer-specific covariates (such as store ratings, distance between
consumer and store, and price) and 3 parameterizes preferences over these attributes. The fixed-effect
0, captures consumer-location characteristics and &; denotes the unobserved component of utility for
seller j. Consumers arriving at different points in time may face different choice sets due to inventory
stock-outs. Let J!() C JT (1) denote the set of sellers that have both entered the market and have

available inventory at time (¢, 7).

A consumer’s total utility is given by Vjy(3) + 635, where the 636 terms are idiosyncratic shocks and

5Each consumer is assumed to purchase at most one bag per transaction, and multiple-bag purchases are treated as
independent transactions.

12



assumed to be i.i.d. draws from the Gumbel distribution, yielding a standard multinomial logit (MNL)
model for consumer choice.” Following standard practice, we normalize the utility of the outside option
( = 0) to zero for all consumer locations. The probability szh that a consumer arriving at location £
at (t,7) chooses store j is then

eVit(B)

Sjer ($i8) = IS R R O (1)
JeTt)

where {0} represents the outside option available to all consumers. Finally, the aggregate demand for

an entrant j € J 7 (1)) at time (¢,7) is obtained by summing over all consumer locations:

D (i, B8) =Y A () - shy, (¥ 8). 2)

el

To ease the computational burden, we assume that consumers are not willing to travel beyond 2
kilometers, which moderates the size of their choice sets. Under this assumption, when computing

demand D;-T, we aggregate only over the locations ¢ that are within the 2-kilometer radius of store

j.
3.2 Sellers’ Profit and Entry

The supply side of our model characterizes sellers’ market entry decisions as a one-shot game based on
expected profitability. We adopt a static-entry framework in the spirit of Bresnahan and Reiss (1991)
and Berry (1992). This setup is appropriate in our setting given the platform’s relatively short operating

horizon and our focus on cross-sectional variation across a large number of small sellers.®

Each seller j € J has random inventory @;; available in period 7, representing surplus food.” To
capture the empirical prevalence of zero-inventory days, we model @;; using a hurdle model (Cragg,
1971), using a truncated Poisson to model non-zero inventory. Specifically, with probability u the seller

has no surplus inventory on day 7:

Pr(Qjr = 0) = p.

“The MNL model exhibits the independence of irrelevant alternatives (ITA) property, which is known to have unrealistic
implications for consumer behavior (Train, 2009). To some extent, this is mitigated in our empirical application due to
the spatial heterogeneity captured by the demand model (i.e., variation in consumer-seller distances). This allows for
more realistic substitution patterns across stores based on their geographic proximity, by accounting for the fact that
consumers are more likely to substitute between nearby stores than distant ones.

8Fully dynamic entry models have typically been used to study firm entry/exit over years or decades (e.g, Jia (2008);
Collard-Wexler (2013)). Dynamic entry models also pose computational challenges due to the need to solve a Bellman
equation whose state spaces grows exponentially with the number of sellers (Pakes et al., 2007; Aguirregabiria and Mira,
2007), making estimation infeasible for games with many players, as in our setting.

9Sellers rarely release inventory more than once per day: Mid-day replenishment occurs on only 2.6% of store-days across
all markets.
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For simplicity, we assume all stores in the market have the same zero-inventory probability, . Con-
ditional on positive inventory, ;- follows a Poisson distribution, with its rate depending on the

exponential of seller characteristics X]Q and parameter vector (:

Qjr ‘ Qjr >0 ~ Poisson(exp (CO + CB{?)) .

The exponential ensures the Poisson rate is positive. We write H;(u,{) to denote the inventory
distribution for seller j. Our assumption that sellers’ surplus inventory is exogenous is mild because
the surplus market represents only a small fraction the seller’s total revenue, making it unlikely that
sellers would adjust major production decisions in the primary market in anticipation of surplus market

sales.10

The retail value of seller j’s bag is denoted by R;. Let p(R;) be seller j’s price in the surplus market,
typically a fixed fraction of the retail value (e.g., 1/3). Consistent with the platform’s current practice
of setting discount rates uniformly across all sellers, we assume p(R;) is exogenous from the seller’s
perspective. The period-7 sales for an entrant j is then given by min{D;(¢;c, 3),Q;-({)}, where
Djr(Y;0,8) = > cr D;T (v; oy 3) is the aggregate demand for seller j in period 7. The min{} operator

captures the constraint that sales cannot exceed either available inventory or realized demand.

Sellers’ entry decisions are shaped by their fixed cost of entry and marginal (i.e., per-bag) cost. Seller

j’s marginal cost is parameterized by 08¢, where
c;i(0°) =65 + (Bc)ij + €5

and x7 is a vector of observable seller characteristics (e.g., seller ratings in the primary market). The
term Ej represents Normally distributed seller-specific shocks, assumed to be zero-mean with standard
deviation o¢. The marginal cost ¢; may capture transaction costs or opportunity costs from releasing

the inventory to the platform. The seller’s expected profit contribution before fixed costs is then

E[m;(: @, 8,¢, 0] = (B(R;) — ¢;(6%)) - > Elmin{ Dy (¢h; . 8), Qj-(O)}]-

TET

In addition to marginal costs, sellers incur a fixed cost to enter the market. The market is divided
into disjoint geographic segments m € M (e.g., zip codes), with each seller belonging to exactly one

segment. Let 7, denote the set of all potential sellers in segment m. Each segment m is characterized

YEmpirically, we observe the mean daily revenue of sellers in the marketplace to be $5 to $19, which is a small fraction
of typical daily revenue in the primary market.
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by a vector of attributes v,,. The fixed entry cost for segment m is then given by
Fn(07) =05 +(07) 'vim +ep,

F

where €,

are Normally distributed zero-mean segment-level shocks, with standard deviation o". Fi-

nally, we can write seller j’s total profit as a function of their binary entry decision v; as:

E[IL;(4; o, B, €, 0)] == ¥ - [Elm;(¢; 0, B, €, 0°)] — Fin(67)] . (3)

Note the expectation in seller j’s profit function is taken over the distributions of inventory quantity,

consumer arrivals, and idiosyncratic shocks in consumer utility.

3.3 Market Equilibrium

Because each seller’s expected profit E[II;(-)] depends on the decisions of other sellers, all sellers’ en-
try decisions are the outcome of a strategic entry game, played within each segment m € M. Let

Y, = [V : j € Tm]. We formalize the definition of equilibrium in the entry game next:

Definition 1. For each segment m € M, a strategy profile v, is an equilibrium if and only if
E[lL;(4; a, 8,¢,0)] > 0.

A market equilibrium in our model consists of seller entry decisions, consumer choice probabilities,
and expected sales. To ensure tractability in estimation of the entry game, we introduce two key

assumptions.

Assumption 1 (Segment Competition). In the entry game, sellers assume they only compete

against other sellers in their geographic segment.

Assumption 1 significantly improves tractability of estimation. It implies that sellers ignore the po-
tential entry of sellers outside their own market segment when forming beliefs about expected profit,

which is reasonable given that food retailers primarily compete locally with nearby establishments.

Assumption 2 (Cost-Based Entry). Prior to entry, each seller j in segment m only knows their
own cost ¢; and the segment entry cost F,, when they enter, i.c., sellers form profit beliefs by taking

expectations over demand Dj., quantity Q;r, and bag value Vj.

Assumption 2 guarantees a unique, threshold-based equilibrium in each segment’s entry game that
depends only on the sellers’ marginal costs ¢;. While it is stronger than Assumption 1, the guarantee of a

unique equilibrium eliminates ambiguity in our counterfactuals by avoiding the multiplicity of equilibria
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that typically plague entry games (Ciliberto and Tamer, 2009). The assumption can be interpreted as
sellers having no prior information about the distribution of their competitors characteristics, which
is reasonable given our focus on a large number of small sellers and the relative novelty of the surplus

market; a similar assumption is used in Lee and Musolff (2023).

Assumptions 1 and 2 lead to the following characterization of the entry game:

Proposition 1 (Unique Entry Equilibrium). Under Assumptions 1 and 2, there exists a unique
entry equilibrium characterized by a set of threshold costs cj,c5, . .., C|*/v1| such that seller j € Jn, enters

market segment m € M if and only if ¢; < c},.

The existence of a unique threshold equilibrium follows in a straightforward manner from the mono-
tonicity of sellers’ expected profit in their marginal cost ¢; (proof in Appendix C). The market equi-
librium is defined by two conditions: First, given the set of entering sellers, consumers choose among
the available products to maximize utility. Second, given the induced choice probabilities and entry
decisions of other sellers, each seller enters if and only if doing so is profitable. We impose these

equilibrium conditions explicitly in estimation, described next.

4 Demand Estimation: Consumer Arrival and Choice

Section 4.1 specifies the demand-side model. Section 4.2 discusses the main endogeneity challenge in

our setting and and describes the instrument we use to address it.

4.1 Specification
We let the number of potential consumers arriving at a location ¢ hour ¢ on date 7 be given by
)\ZT(a) = ag + a1 - PopulationDensity, + oo - Weekend, + a3 - Incomey.

This specification accounts for demographic and temporal factors that influence consumer arrivals. For
simplicity, arrivals depend only on the aggregated time period 7, but not . For consumer choice, the

deterministic component of utility for seller j € J!(1) at location ¢ is specified as:
Vie(B) = Bo + B1 - f(PlatformRating;,v) + B2 - Distancej, + (3 - BagPrice; + Retaile'ce; + 80+ &5

Here, PlatformRating; denotes the store’s platform rating, reflecting perceived quality. We specify
f(PlatformRating;,v) = €” PlatformRating;  which allows ratings to influence consumer utility non-
linearly. Our assumption that consumer utility is convex in PlatformRating is supported by the

observed linearity in the sale probability shown in Figure 2. The term Distancej, is the Euclidean
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distance between consumer location £ and seller j, capturing consumers’ travel costs; we assume all
consumers arrive at the centroid of a census tract. BagPrice; is the discounted price on the platform
and RetailPrice; is the original retail value in the primary market. The exponent v € (0,1) is a hyper-
parameter representing consumers’ mental discounting of the bag’s value, potentially due to reduced
freshness, as most pick-up windows occur in the late afternoon or early evening. To mitigate multi-
collinearity between BagPrice; and RetailPrice;, v is constrained to be strictly less than 1. Finally, d;
denotes the census tract fixed effect and &; captures unobserved demand shocks for seller j.

Identification of a and 3 is supported through spatial variation in consumer demographics and cross-
sectional variation in store characteristics, respectively. However, because we do not observe consumer
arrivals and market shares separately, the variation in aggregate sales across stores only jointly identifies
a and B. Two additional sources of variation allow for disentanglement and precise identification of
both parameters. First, the hourly-level inventory data allow us to observe when products stock out at
different times during the day, which creates exogenous variation in consumers’ choice sets and helps
pin down B.!'! For example, when a popular store stocks out, the re-distribution of demand among
remaining options reveals substitution patterns that identify the choice model. Additionally, the limited
search radius of consumers induces spatial variation in consumers’ choice sets, which further separates
a from B by creating variation in sales that can only be explained by differences in arrival rates, rather

than preferences.

4.2 An Instrument for Consumer-Seller Distances

Our demand model captures spatial heterogeneity in consumer preferences through the variable Distance;y.
The coefficient f2 represents consumers’ distance sensitivity, which one expects to be negative (i.e.,
consumers are less likely to purchase from more distant stores). However, consumer—seller distances
are likely endogenous because sellers’ geographic locations and decision to enter the surplus market
may be influenced by unobserved seller characteristics. For example, stores may locate in popular com-
mercial areas based on proprietary market research or historic sales patterns. These stores may attract
higher demand despite being farther from residential neighborhoods, which would lead to attenuation
bias in fs. Additionally, stores located far from consumers may experience lower sales in the primary
market, which increases the probability that these outlets accumulate excess food and subsequently
enter the surplus food marketplace. Consequently, the sample of marketplace participants is likely to

over-represent stores with greater travel distances, biasing 82 away from O.

Our model explicitly accounts for the endogeneity of consumer—seller distances, an identification chal-

'See Musalem et al. (2010) and Conlon and Mortimer (2013) for prior work that also uses stock-outs to identify consumer
choice models.
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lenge that warrants careful attention in spatial demand estimation but has until recently been over-
looked (Cao et al., 2024). In particular, we address the endogeneity of distance through use of in-
strumental variables within a generalized method of moments (GMM) framework, following standard
practice in demand estimation (Berry et al., 1995; Nevo, 2001). Given a set of valid instruments

{Z]]'Ce :k=1,...,K}, the key identifying assumptions are the orthogonality conditions
E(ZY-¢(a.B) =0, k=1....K, @

which states that each instrument is uncorrelated with the structural error term §;. These moment
conditions ensure that variation in the endogenous regressors (i.e., distance) induced by the instru-
ments is independent of unobserved demand shocks, allowing for consistent estimation of the distance

sensitivity Ss.

The GMM optimization problem amounts to finding parameters (o, 3) such that the sample analog
of the expectation in (4) in is minimized. The standard approach to computing the demand shocks &;
as a function of the parameter estimates (a, 3) is the “share inversion” approach proposed by Berry
et al. (1995). However, this approach does not work in our setting because consumers’ choice sets vary
over time and the market share from each consumer location ¢ is unobserved. We instead recover §;

by solving a non-linear optimization problem — additional details are provided in Appendix E.

To be a valid instrument, Z ]’?Z must be correlated with Distance;j; (relevance), and uncorrelated with the
error term &; (exclusion). We construct instruments that plausibly satisfy both conditions by using the
locations of historical landmarks — specifically, each market’s city hall and courthouses. The relevance
condition is supported by the fact that these landmarks were located in the early stages of urban devel-
opment (i.e., 19th century) and their locations were influenced by the same factors that also shaped the
emergence of commercial districts, such as historic land-use patterns and regulations. As a result, the
locations of present-day food retailers are likely to be spatially correlated with these landmarks, satis-
fying the relevance condition. However, the locations of these landmarks are also plausibly exogenous
to modern demand shocks since they predate contemporary factors that shape consumer preferences,
as well as platform-specific demand shocks, thus satisfying the exclusion condition. Appendix E.2

provides details of instrument construction and strength tests.

5 Supply Estimation: Seller Inventory and Entry Costs

We estimate the supply-side of the model (i.e., sellers’ entry costs) by matching the predicted and
empirical number of entrants in each market segment, following Berry (1992). Doing so is compu-

tationally challenging in our setting: Because seller entry is modeled explicitly as the outcome of a
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discrete game, the equilibrium number of entrants under the model cannot be expressed in closed
form, which makes continuous optimization within a standard generalized method of moments (GMM)
framework inapplicable. Additionally, our model lacks a tractable likelihood function that describes
the number of entrants, which precludes likelihood-based estimators (e.g., as used by Seim (2006) for
market entry). We address this by proposing a novel estimator for sellers’ cost parameters based on

integer optimization.

Section 5.1 specifies sellers’ fixed and marginal cost functions. Section 5.2 presents an estimator for
recovering the cost parameters based on the method of moments. Section 5.3 describes how the esti-
mator can be expressed exactly as an integer optimization model, with technical details relegated to

the Appendix.

5.1 Specification

On the supply-side, the key parameters to be estimated are the inventory parameters (u, ¢), the fixed
and marginal cost parameters 6 = (GF ,0°), and the standard deviations of the cost shocks o = (o', 0°).

We suppress dependence on demand-side parameters below. First, we specify the inventory as

Pr(Q;- =0)=p, Qjr ‘ Qjr >0~ Poisson(exp({o + (1 - GoogleRatingj)) , VieJd, 1€ 7.

Note that because the inventory @ ;- depends only on exogenous seller characteristics and we observe
the daily quantities directly, the parameters g and ¢ can be estimated through a maximum likeli-
hood approach using the daily store-level inventory data; the technical details are straightforward and

omitted. Next, we specify sellers’ fixed and marginal cost'? functions:

F(01) = 08 + 6F . MedianHomeValue,, + £,
¢j(0°) = 05 + 07 - GoogleRating; + 05 - PopulationDensity; + 05 - HoursOpen;
+ 05 - log(RatingCount;) + 05 - CoffeeShopIndicator; + 05 - StyleIndicator; + €5.
We use zip code boundaries to define the geographic segments m € M. The variable MedianHomeValue,,

denotes the median home value in geographic segment m and serves as a proxy for local affluence, which

may influence staff wages and brand considerations.

The variables GoogleRating; and log(RatingC’ountj) capture store quality and popularity in the primary

market, which may influence operational efficiency. PopulationDensity; is the population density of

12The fixed cost of joining the platform, F,, may include staff training, new sales hardware, potential brand and repu-
tational costs from selling surplus food, and the annual platform membership fee, typically $89 in the U.S. (Wu and
Duarte, 2024). The marginal cost, ¢;, captures transaction and opportunity costs from listing surplus inventory on the
platform.
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the geographic segment in which the store is located, averaged over census tracts. The variables
HoursOpen; is the total weekly hours of operation, and CoffeeShopIndicator; is a dummy to capture
systematic differences in cost structures across store types. The variable StyleIndicator; categorizes
stores as “upscale” or “basic”, and is constructed using natural language processing based on Google’s
text description of the store (see Appendix F.2). The variables described above provide variation within

and across segments, enabling the identification of 87 and 6°.

5.2 Moment-Based Estimator

The cost parameters 8 = (0F ,0°) can be estimated by matching empirical and model-predicted mo-
ments within a simulated method of moments framework (McFadden, 1989; Pakes and Pollard, 1989).
Following Berry (1992), we use the number of stores entering each segment as our primary moment
condition. For notational clarity, we write the estimation problem for a single set of simulated shocks.
Let (el €5) be the simulated shocks under the parameter o. Let Ny, denote the observed number of
entrants in segment m, and let Nm(ﬂ) represent the model-predicted number of entrants under pa-

rameters 6. Using the expression for E[II;] from (3), the moment optimization problem can be written

miniemize Z ‘Nm - Nm(H)‘ (5)
meM
subject to Ny, (0) = Z 1 {(p(Rj) —¢;(69)) - Z Emin{D;-(v¥), Qj-}] > Fm(OF)} .
J€Im TeET

We adopt the Li-norm in the objective function for computational simplicity when reformulating the

estimator as an integer optimization model in the next section.

The typical approach to solving estimators of the form (5) is to use a nested fixed-point (NFXP)
algorithm (Rust, 1987; Bajari et al., 2010) within a simulated method of moments framework. In short,
these algorithms optimize the moment condition by iterating through two loops: An outer loop that
searches over values of the structural parameters € (e.g., within a grid), and an inner loop that solves
for the relevant equilibrium at each parameter instance. If necessary, shock distribution parameters
(e.g., o) can also be estimated through a grid search in another outer loop, prior to simulating shocks.
See Lee and Musolff (2023) for an example of an NFXP algorithm implemented within a market entry
context, and Appendix F.5 for details of an NFXP algorithm applied to the estimator (5).

The challenge with NFXP algorithms is that they are well-known to become computationally intractable
as the number of parameters increases (Su and Judd, 2012), which in our setting can make estimation

nonviable for models with even a modest number (< 5) of cost parameters. Instead of using an
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NFXP algorithm, we propose an alternative solution technique that leverages the paradigm of integer

optimization (Wolsey, 2020), described next.

5.3 Method of Moments via Integer Optimization

We provide a brief overview of our method of moments via integer optimization (MMIO) approach
here and provide additional details in Appendix F. Intuitively, the binary nature of sellers’ equilibrium
strategies allows us to use discrete variables to endogenize sellers’ entry decisions within the estimator.
This results in an optimization problem that jointly searches over possible equilibria and the cost
parameters (BF ,0°), instead of nesting them in separate steps, as in NFXP methods.'® This difference
in solution technique yields enormous computational advantages over NFXP, as demonstrated through

numerical experiments on synthetic data in Appendix F.

Our approach proceeds in two steps. First, we use a random forest to construct a pool of “candidate
equilibria” for the estimator to search over in tandem with the cost parameters. This pre-processing
step avoids searching over all possible 2/7=! equilibria in each market segment by focusing only on
those that are most plausible based on the data. We refer the readers to Appendix F.1 for details of

candidate equilibria generation.

Second, we solve the estimator (5) by expressing it as an integer optimization problem. Despite
narrowing down the set of candidate equilibria in the first step, the full optimization problem remains
challenging when the number of sellers | 7| or market segments |M| are large, because each seller
introduces a pair of equilibrium entry conditions that must be enforced during estimation, leading to
a large number of constraints in the optimization model. We address this by developing an iterative
solution technique in the spirit of “cutting plane” methods that are commonly used to solve large-scale
integer optimization problems (Geoffrion and Marsten, 1972; Wolsey and Nemhauser, 1999; Wolsey,
2020). Intuitively, the technique focuses on a small set of sellers and iteratively generates equilibrium
conditions for additional sellers on-the-fly, which drastically improves computational performance. Our
method is general enough to have applications beyond our specific context of surplus food marketplaces,
and to our knowledge is the first use of integer optimization to estimate player payoffs within a discrete

game.

13Similar to Su and Judd (2012), our estimator involves enforcing equilibrium conditions within a mathematical program.
However, their framework focuses on continuous decisions and requires closed-form equilibrium conditions, which are
typically unavailable in discrete games.
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Table 2: Example Performance of MMIO and NFXP Estimators.

Segments |6°| |@¥| Stores Runtime (min) RRMSE (6°) RRMSE (6°)

MMIO
10 2 2 449 6 0.42 0.31
10 11 2 449 86 0.08 0.64
NFXP
10 2 2 449 610 0.18 0.26
10 11 2 449 1202 0.37 0.69

Notes: |0°| and |8 | denote the dimensionality of the marginal and fixed cost parameters
(including the intercept), respectively. Estimation accuracy is assessed using the Relative
Root Mean Square Error (RRMSE), computed relative to the true initialized values of 6°
and 8. All results are based on the shock standard deviations (¢¢, o) = (0.05,0.05).

6 Estimation Results

This section presents estimation results for both the demand- and supply-side of the model for all
four U.S. markets. A map of the study regions and key summary statistics are provided in Ap-

pendix B.1.

6.1 Parameter Estimates

Table 3 reports the estimated coefficients from the consumer arrival and choice models. We find sig-
nificant heterogeneity in consumer preferences with respect to PlatformRating and Distance, discussed

more in Section 6.3.

Table 4 reports the parameter estimates that determine sellers’ marginal (6¢) and fixed costs (8).
Combined with the covariate means (Table 11 in Appendix B.1), the estimates allow us to recover
the average marginal cost in each market. The marginal cost of one bag is approximately $10.26 in
Manhattan, $10.18 in San Francisco, $13.97 in Boston, and $14.13 in Seattle, indicating substantial
cross-city heterogeneity. For all four cities, the average costs far exceed the observed bag prices (Table
10 in Appendix B.1), suggesting that high marginal costs may help explain limited market entry by
food retailers. With respect to fixed costs, we estimate them to be relatively small and comparable to
the magnitude of the prorated annual platform membership fee, which is approximately $17 per store

for a 10-week period. The coefficient on MedianHomeValue is estimated to be zero in all markets.
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Table 3: Estimated Coefficients for Consumer Arrival and Choice Model.

Manhattan San Francisco Boston Seattle

Consumer arrival (o)
Intercept 0.98 (0.08) 1.77 (0.07) 0.57 (0.06)  1.99 (0.07)
PopulationDensity 1.38 (0.09) 0.75 (0.06) 1.36 (0.06)  2.10 (0.05)
Weekend 198 (0.08)  -1.23 (0.07)  -2.28 (0.06) -1.82 (0.06)
Income 0.54 (0.07) 1.85 (0.05) 0.14 (0.07)  1.48 (0.07)

Consumer choice (3)
Intercept 1.58 (0.04) 1.02 (0.06)  1.15(0.10) -0.42 (0.14)
PlatformRating 1.74 (0.03) 0.52 (0.02) 1.67 (0.03)  0.90 (0.03)
Distance 065 (0.04)  -1.98 (0.05)  -1.00 (0.07) -2.02 (0.11)
BagPrice 179 (0.04)  -1.59 (0.05)  -2.09 (0.07) -2.19 (0.10)
Scale parameter (v) 0.50 0.44 0.48 0.46
Census tract FE () YES YES YES YES
v YES YES YES YES

Notes: All specifications include census tract fixed effects (FE). Instruments (IV) are described
in Section 4. Standard errors, shown in parentheses, are estimated through subsample boot-
strapping and rescaling. v is the scale parameter for the PlatformRating covariate. The mental
discounting hyperparameter ~ is set to 0.9 for all markets. PopulationDensity is measured as
persons per square meter and calculated at the census tract level. Weekend equals 1 on week-
ends and 0 otherwise. Income denotes the median household income of a census tract, measured
in units of USD 100,000.

Table 4: Estimated Coefficients for Sellers’ Cost Functions.

Manhattan San Francisco Boston Seattle

Marginal costs (6°)

Intercept ($) 0.44 9.43 0.74 1.24
GoogleRating 0.00 0.00 1.85 1.58
PopulationDensity 0.00 3e—03 0.00 0.00
HoursOpen 0.00 8e—03 9e—03 0.06
log(RatingCount) 1.74 0.05 0.09 0.00
CoffeeShopIndicator ($) 0.54 0.00 8.20 0.00
StyleIndicator (3) 0.93 0.00 2.63 4.95

Fized costs (0F)

Intercept ($) 10.25 24.84 27.61 16.97
MedianHomeValue 0.00 0.00 0.00 0.00

Notes: Small coefficients (absolute value < 0.01) are reported in scientific notation. Popu-
lationDensity is measured in persons per square kilometer and is calculated at the market-
segment (ZIP-code) level. HoursOpen denotes total weekly operating hours. Indicator
variables are defined as follows: CoffeeShopIndicator = 1 if the store is a coffee shop (0
otherwise); StyleIndicator = 1 if upscale (0 if basic). MedianHomeValue is measured in
millions of U.S. dollars. Fixed cost estimates correspond to the pro-rated entry cost for
the number of days in our sample: 64 days for Manhattan, San Francisco, and Boston,
and 45 days for Seattle.
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Lastly, Table 5 reports the hurdle model estimates for sellers’ random inventory, and Figure 4 compares

the fit of the inventory model with empirical data based on seller-day observations.

Table 5: Parameter Estimates for Inventory Hurdle Model.

Manhattan  San Francisco Boston Seattle
Zero probability, 1 0.51 (0.03) 0.57 (0.04) 0.50 (0.06) 0.67 (0.04)
Intercept, (o 2.71 (0.85) —3.55 (2.43)  —5.85 (5.72) 3.95 (3.33)
Google Rating, (1 —0.31 (0.19) 1.02 (0.56) 1.54 (1.33)  —0.65 (0.73)

Notes: Standard errors (in parentheses) are obtained by bootstrapping with 1,000 replications,
resampling at the store level.

Figure 4: Inventory Hurdle Model Fit.
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Notes: Parameter n denotes number of store-day observations.

6.2 Model Fit

Figure 5 illustrates the model fit in terms of seller-level market shares, with observed shares calculated
from realized sales. The RMSE ranges from 0.002 to 0.021 across the four markets, indicating strong
in-sample predictive performance. We use the log scale in Figure 5 because the distribution of market

shares is skewed.

Figure 5: Observed vs. Predicted Market Shares.
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Notes: Observed vs predicted market share (log-log, same scale) across markets. Reported p values denote correla-
tion and RMSE values measure model fit, both using original untransformed market share values.
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We combine the estimated consumer demand, inventory, and cost parameters to compute sellers’ profit
functions. Using these profit functions, we simulate the full market equilibrium under the estimated
structural model. We assess goodness-of-fit by comparing the predicted and observed number of en-
trants per market segment (Figure 6), as well as the predicted and observed sales volumes (Figure 7).

The fit appears reasonable given the small number of entrants in each market segment.

Figure 6: Observed vs. Predicted Entrant Count per Segment.
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Figure 7: Observed vs. Predicted Aggregate Sales by Segment.
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6.3 How Do Consumer Preferences Vary by Urban Environment?

We now address our first research question: How do consumer preferences in surplus food marketplaces
vary across urban environments? Table 3 reveals clear differences in how consumers across the four
markets weigh quality and travel costs. We use these estimates to compute the dollar-equivalent
decrease in price that yields the same change in consumer utility as a one-star increase in seller rating,
and the same for a one-kilometer decrease in travel distance. This normalization allows us to directly

compare across the four urban centers in our sample.

In all four markets, a one-star improvement in a seller’s rating is equivalent to a substantial price
decrease, although the magnitude varies: Manhattan and Boston are most responsive to ratings ($5.86

and $4.11 per star, respectively), while the effect is more modest in Seattle ($2.12) and San Francisco
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($1.33). Interestingly, the ordering of the four markets is exactly reversed when considering travel
costs: San Francisco and Seattle consumers experience the largest disutility from each additional kilo-
meter ($1.25 and $0.92, respectively), whereas travel costs are lower in Boston ($0.48) and Manhattan

($0.36).

Figure 8 visualizes consumer preferences in dollar-equivalents. We offer the following reasoning for
the depicted behavior. In the denser and more accessible markets of Manhattan and Boston, low
travel costs expand consumers’ effective choice sets, allowing them to compare more sellers easily. This
intensifies quality competition and leads sellers to become more quality-focused, which is reflected in
consumers exhibiting higher rating sensitivity in those markets. The opposite is true in San Francisco
and Seattle, where higher travel costs force consumers to focus on nearby sellers, softening the role of
ratings. These results suggest the nature of seller competition is materially influenced by the urban
environment in which the market operates — in particular, sellers in low travel-cost cities must maintain

strong on-platform reputations to thrive in the marketplace.

Figure 8: Dollar-Equivalents of Platform Ratings and Seller Distance.
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Notes: Consumer preference for quality (PlatformRating) improvement and travel cost (Distance) reduction in
dollar-equivalents across markets. Each marker represents a city, with coordinates indicating the dollar value of a
one-star increase in rating and a one-kilometer increase in distance. For ratings, the dollar equivalent is computed
from the mean rating in each market.

7 Counterfactuals

In this section, we use our estimated model to conduct two counterfactual analyses, corresponding
to our second and third research questions. Do demand- or supply-side effects dominate in response
to market-wide price changes? How does permitting seller price competition impact seller entry and

aggregate sales volume?
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7.1 Do Demand- or Supply-side Effects Dominate Pricing?

We first consider the status-quo policy where the platform sets a uniform price ratio for all sellers in
each market. We simulate market equilibria over a grid of uniform price ratios, varying in 5-percentage-
point increments above and below the status quo ratio of 33%. At each price ratio, we recompute the
market equilibrium and simulate aggregate sales and the number of entrants, following Algorithms 1
and 2 respectively. We identify the optimal price ratio under the objective of maximizing aggregate

sales. Results are presented in Figure 9 and Table 6.

Figure 9: Equilibrium Entry and Sales Under Uniform Price Ratios.
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Table 6: Equilibrium Outcomes under Sales-Maximizing Price Ratios.

Manhattan San Francisco Boston Seattle

Optimal Price Ratio (%) 68.3 73.3 78.3 43.3
Aggregate Sales (thousands) 54.4 25.9 4.88 2.79
Difference in Sales (%) +204 +414 +205 +56.4
Number of Entrants 438 337 64.8 86.3
Difference in Entrants (%) +202 +424 +200 +57.4

Notes: Each column reports simulated market outcomes at the optimal uniform price ratio
that maximizes aggregate sales. Percentage increases are measured relative to the status-quo
price ratio (33% of retail value). Sales are reported in thousands of bags.

Table 6 shows that the optimal price ratio for a sales-maximizing platform is around 70% or higher

in most markets, with Seattle being the exception (43%). As shown in Figure 9, the aggregate sales
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volume is upward-sloping over a wide range of price ratios, including the current policy of 33%. This
suggests that the supply-side of the marketplace is generally more responsive to price changes than
demand, and that equilibrium sales volume is primarily dictated by seller entry. This aligns with our
observation that inventory is very often binding in the data: Stores sell all of their inventory on the

platform on 70-88% of days on average, depending on the market.

These tight supply constraints explain why market outcomes improve dramatically at the optimal price
— in Manhattan, Boston and San Francisco, both entry and sales are predicted to triple or quadruple.
The outcomes from price optimization are more modest in Seattle by comparison, potentially due to
its unique combination of both high seller marginal costs ($14.13/unit) and high consumer travel costs

($2.12/km).

7.2 Should the Platform Allow Seller Price Competition?

Next, we evaluate market outcomes under delegated pricing: A counterfactual in which sellers are profit-
maximizing and permitted to set their own price ratios. This requires solving for a price equilibrium
among sellers in the marketplace. Conditional on a set of entrants, our approach follows the standard
treatment from the literature of Bertrand—Nash price competition under logit-based consumer choice
(e.g., Nevo (2001); Dubé et al. (2002)). The full derivation and computational details are provided in
Appendix G.

Under delegated pricing, a market equilibrium is defined by a pair (¢*, p*(¢*)), which denotes sellers’
entry strategies and optimal prices given the set of entrants. For fixed seller strategies 1, the prices

p*(1) must satisfy the following condition, which follows from the first-order condition of sellers’ profit

functions:
ST A (@) YD st (1 8)
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Note the expression above is a fixed point condition because each choice probability séh depends on a
subset of the equilibrium prices p*(v). Because the full equilibrium requires that entry be profitable, a
market equilibrium is given by entry decisions and prices (¢*, p*(¢*)) that satisfy both (6) and

v =1 { > (p5@") —ci(6%) Dy (97100 ) > Fm<9F>} - @)

TET

The results are summarized in Table 7. Delegated pricing reduces aggregate sales volume in the

marketplace by 58% to 83% compared to the platform’s current policy of a uniform price ratio of 33%.
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The dramatic contraction in sales is driven by seller exit — the number of participating sellers drops
by 35% to 69% depending on the market. These findings suggest that delegating pricing decisions
to individual sellers leads to intense price competition in the marketplace, which pushes margins to
be negative for a large number of sellers. Figure 10 depicts the distribution of equilibrium prices and
marginal costs of entrants under delegated pricing. Average prices increase from $5-8 per bag to $8-14,
with greater dispersion, with mean marginal costs also increasing conditional on entry. Our empirical
finding that delegated pricing can harm market outcomes is directionally aligned with the theoretical

results in Cachon et al. (2025).

Table 7: Counterfactual Equilibrium Outcomes Under Price Competition.

Manhattan San Francisco Boston Seattle

Unit Price ($)

Uniform 5.7 (0.1) 5.0 (0.1) 48 (0.1) 7.7 (0.4)
Delegated 8.4 (0.5) 9.2 (0.7) 13.6 (1.4) 11.2 (1.2)
Difference +2.8 +4.2 +8.8 +3.5

Number of Entrants

Uniform 147.4 (11.7) 64.1 (7.9) 20.5 (4.1) 56.2 (6.6)
Delegated 54.4 (5.3) 31.1 (3.2) 13.3 (1.0) 17.7 (1.8)
Difference —-93.0 —-33.0 7.2 —38.5

Aggregate Sales (thousands)

Uniform 17.50 (1.35) 464 (0.60)  1.27 (0.26)  2.36 (0.33)
Delegated 6.61 (0.65) 1.97 (0.24)  0.52 (0.09)  0.41 (0.08)
Difference (%) —62.2 —57.5 —59.3 —82.5

Aggregate Profit of Entrants (thousands, $)

Uniform 37.67 (3.95) 8.62 (1.52) 348 (1.14) 6.93 (1.25)
Delegated 6.38 (0.52) 152 (0.22)  0.15 (0.13)  0.09 (0.13)
Difference (%) —83.1 —82.3 —95.6 —98.8

Notes: “Uniform” denotes status-quo policy of a 33% price ratio. “Delegated” denotes
seller-controlled pricing. For each market, 100 paired simulations were conducted under
both pricing mechanisms using identical random seeds, ensuring that each pair shares
the same fixed and marginal costs. Standard deviations are reported in parentheses.

These results may appear counterintuitive given that prices and seller participation move in opposite
directions, in contrast to our predictions under uniform pricing (Section 7.1). The difference is explained
by the equilibrium concepts: Here we solve for a Nash equilibrium in both prices and entry, whereas
Section 7.1 fixes prices and considers the entry game only. Consequently, with delegated pricing, sellers
with strong competitive positions (e.g., high on-platform ratings, desirable locations, and low costs),

can credibly threaten aggressive pricing. Anticipating this pressure, weak sellers opt not to enter,
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instead of competing. The net result is that under delegated pricing, fewer sellers sustain positive

margins in equilibrium, allowing them to capture demand at higher prices.

Figure 10: Distributions of Prices and Marginal Costs.
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Notes: All plots are based on 100 simulations and share the same legend. In each subfigure, (a,b) denote the mean
value of the factor under delegated pricing and under uniform pricing (1/3), respectively.

8 Conclusion

This paper addresses the role of pricing as a design lever in surplus food marketplaces. We document
three key findings. First, consumer preferences vary substantially across urban environments, influ-
encing competitive dynamics and the performance of different pricing policies. In particular, we find
consumers trade-off quality (i.e., sellers’ ratings) and convenience (consumer-seller distances) to vary-
ing degrees across markets. Second, seller entry is generally more price-elastic than consumer demand,
leading supply constraints to bind at most prices. Consequently, steep, market-wide discounts are
sub-optimal for the platform. Third, delegating pricing to sellers harms the marketplace: The ensuing
price competition slashes margins and prohibits entry, decreasing sales volume by 58-83% compared

to the status quo uniform discount rate of two-thirds.

Overall, our findings support centralized control of prices in surplus food marketplaces, which relieves
sellers of the excessive competitive pressure associated with seller-controlled pricing. Nonetheless,
our results caution platform operators against mandating large discounts on surplus food, which can

compress sellers’ margins and deter participation in the marketplace.
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This paper also contributes methodologically to the literature on empirical models of market entry by
introducing an integer optimization—based estimator for sellers’ cost functions. In contrast to nested
fixed-point (NFXP) methods, our approach jointly searches over the parameter space and a set of
plausible equilibria of the entry game, reducing runtimes by up to an order of magnitude compared to
NFXP. Numerical experiments suggest this speed-up does not come at the cost of estimation accuracy,
and often improves it. This scalability makes it possible to accommodate richer cost structures with
more covariates, providing a new a broadly applicable tool for empirical work on markets with discrete

strategic entry.
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Appendix

A Supplement for Section 2: Data and Marketplace Overview

The screenshots below illustrate the app’s interface. The first shows store categories, the second highlights key
features like price, rating, pick-up window, and location, and the third reveals the default distance filter (1 mile

in Manhattan) which ensures users see only the nearby stores.

Figure 11: Consumer View of Platform App.

Seller price, rating and loca- Distance-based search filter
tion information. Additional seller details. (1 mile for Manhattan).

Table 8 shows several consecutive rows from the platform data for a specific bakery in New York City. Key
features include the store’s location, pickup window, inventory levels, sold-out time, platform price, retail price,

average rating, and number of ratings.
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Table 8: Example of Store-Hour Observations.

Timestamp Store ID  Store Name Long. Lat. Pickup Start Pickup End
3/4/24 15:00 384279  Bel Ami Cafe —73.9670 40.7690 17:00 18:00
3/4/24 16:00 384279  Bel Ami Cafe —73.9670 40.7690 17:00 18:00
3/4/24 17:00 384279  Bel Ami Cafe —73.9670 40.7690 17:00 18:00
Items Avail.  Sold Out At Category Price Value Rating Rating Count

0 - BAKED_GOODS 3.99 12.00 4.73 99

3 - BAKED_GOODS 3.99 12.00 4.73 99

0 16:13 BAKED_GOODS 3.99 12.00 4.73 99

Notes: This example shows that at 15:00, the store had no available stock. By 16:00, three bags were
released for pickup between 17:00 and 18:00, and were sold out at 16:13. The bags, with retail value

of $12.00, was sold for $3.99.

B Descriptive Statistics

In this section, we present descriptive statistics and visualizations of the study region to aid interpretation of both

the data and the estimation results. We begin with an overview of the scale and distribution of bakeries across

the four regions, and then report summary statistics for the covariates used in the demand-side and supply-side

models.

B.1 Locations of Food Retailers Within Four Geographic Markets

Our inventory data comes from 465 bakeries across the four markets, with locations shown in Figure 12. Man-

hattan stands out with a much higher retail density (4.81 stores per km?) compared to the other cities.

Table 9: Summary Statistics of Four Geographic Markets.

Manhattan San Francisco Boston Seattle

No. Stores 284 94 34 53
No. Census Tracts 270 233 130 137
Area (km?) 59 120 113 452
Stores per km? 4.81 0.78 0.30 0.12
Stores per Tract 1.05 0.40 0.26 0.39

B.2 Demand-side Covariates

Table 10 reports the distribution of covariates used in the demand-side model estimation.
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Figure 12: Average Daily Sales of Sellers in Four Markets.
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Table 10: Summary Statistics of Demand-Model Covariates.

Manhattan San Francisco
Variable Mean SD 25% Median 75% Mean  SD 25%  Median  75%
PopulationDensity (/mQ) 0.037 0.018 0.024 0.037 0.046 0.012 0.009 0.007 0.010 0.014
Weekend 0.17 0.37 0.00 0.00 0.00 0.17 0.37 0.00 0.00 0.00
Income (100]{:) 1.16 0.60 0.66 1.13 1.60 1.43 0.57 1.03 1.45 1.83
PlatfromRating 4.46 0.31 4.31 4.53 4.68 4.54 0.31 4.44 4.62 4.74
Distance (km) 5.48 3.80 2.49 4.61 7.69 4.97 2.70 2.77 4.63 7.00
BagPrice (USD) 5.42 2.20 3.99 4.99 5.99 4.95 1.20 3.99 4.99 5.99
Discount (USD) 10.86 4.39 8.01 10.01 12.01 9.93 2.39 8.01 10.01 12.01
Boston Seattle
Variable Mean SD 25%  Median 75% Mean  SD 25%  Median  75%
PopulationDensity (/m2) 0.011 0.007 0.007 0.010 0.016 0.007 0.007 0.003 0.005 0.009
Weekend 0.17 0.37 0.00 0.00 0.00 0.17 0.37 0.00 0.00 0.00
Income (100/6) 1.03 0.51 0.68 0.94 1.36 1.27 0.47 0.97 1.28 1.56
PlatformRating 4.42 0.27 4.19 4.48 4.66 4.74 0.15 4.67 4.76 4.84
Distance (km) 3.13 148  2.02 3.05 415 547 295 3.10 5.30 7.44
BagPrice (USD) 4.79 0.79 3.99 4.99 4.99 5.52 2.17 3.99 4.99 5.99
Discount (USD) 9.61 1.59 8.01 10.01 10.01 11.11 4.45 8.01 10.01 12.01

Notes: PopulationDensity is measured as the number of residents per square meter and calculated at the census-tract

level. Weekend is an indicator equal to 1 if the observation falls on a weekend and 0 otherwise.

Income denotes the

median household income, expressed in units of $100,000. PlatformRating refers to the store’s rating on the surplus food
marketplace. Distance measures the consumer—store distance in kilometers. BagPrice is the price paid by consumers for
each bag, while Discount represents the difference between the primary-market retail value and the discounted price. SD

denotes standard deviation.

B.3 Supply-side Covariates

The covariates underlying the entry model estimation are summarized in Table 10.
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Table 11: Summary Statistics of Covariates in Sellers’ Fixed and Marginal Cost Functions.

Manhattan San Francisco
Variable Mean SD 25% Median 75% Mean SD 25% Median 75%
GoogleRating 4.31 0.41 4.10 4.40 4.60 4.42 0.33 4.20 4.50 4.60
PopulationDensity (k/km?) 309  9.81 21.8 34.2 38.7 9.82 4.68 7.35 8.47 10.6
HoursOpen 73.1 26.8 63.0 76.0 89.8 61.0 26.2 45.5 62.0 77.5
log(RatingCount) 5.26 1.31 4.48 5.46 6.15 5.03 1.21 4.25 5.11 5.89
CoffeeShopIndicator 0.47  0.50 0.00 0.00 1.00 0.29 0.45 0.00 0.00 1.00
StyleIndicator 0.43 0.50 0.00 0.00 1.00 0.56 0.50 0.00 1.00 1.00
MedianHomeValue ($M) 1.32 0.30 1.06 1.35 1.63 1.42 0.21 1.26 1.45 1.60
Boston Seattle
Variable Mean SD 25% Median 75% Mean SD 25% Median T75%
GoogleRating 4.22 048 4.10 4.30 4.50 4.45 0.35 4.30 4.50 4.70
PopulationDensity (k’/km2) 12.2 4.71  10.3 13.2 15.2 6.52 4.28 3.94 4.28 6.01
HoursOpen 72.1 25.5 56.0 76.0 89.3 63.1 27.5 46.0 63.0 77.0
log(RatingCount) 5.14  1.24 4.38 5.18 589 537 1.20 4.60 5.46 6.11
CoffeeShopIndicator 0.42 0.49 0.00 0.00 1.00 0.32 047 0.00 0.00 1.00
StyleIndicator 0.34 0.48 0.00 0.00 1.00 0.39 0.49 0.00 0.00 1.00
MedianHomeValue ($M) 0.97 0.25 0.78 0.93 1.04 098 0.17 0.90 1.00 1.15

Notes: PopulationDensity is measured as the number of thousands of residents per square kilometer and is calculated
at the market-segment (ZIP-code) level. HoursOpen denotes the total weekly operating hours of each store, as reported
on Google Places. SD denotes standard deviation.

C Proof of Proposition 1

Without loss of generality, we assume E[p(R;)] > ¢; for all j € J, otherwise seller j trivially never enters and
can be excluded from the entry game. Let J,5 C 7, denote an arbitrary set of entrants in segment m. First,
Assumption 1 implies seller j’s sales depends only on the entry decisions of the other sellers in segment m.
Further, Assumption 2 implies that all sellers in the same segment form identical beliefs about their expected
sales E[S;] and price E[p(R;)]. It follows that the expected sales for each entrant j € J,} depends only on
the total number of entrants |7,}| in the same segment. Thus, we can write each entrant’s expected sales as
E[S;(]7,t])]. Note an entrant j € J,} has positive profit if and only if (E[p(R;)] — ¢;)-E[S; (|7} |)] > F,,. Define
the threshold function ¢, () := E[p(R;)] — F./E[S;(-)]. It follows that entrant j € J,} has positive profit if and
only if ¢; < ¢ (]7,F]). Next, note S;(|7,;|) weakly decreases in |7,}| because each additional entrant weakly
expands every consumer’s choice set, decreasing every seller’s demand. It follows that ¢, (]7,}]) decreases in
|7,f]. We have thus established that for an arbitrary set of entrants J,}, only those with ¢; < ¢ (|7,}]) are

profitable, and that ¢, (| 7,F]) decreases in |7, |. To identify the unique equilibrium, sort sellers costs in ascending
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order ¢(1), €2y - -5 C(|J,|)» and let ny, be the largest integer such that ¢, ) < c*(nk,). This integer n}, exists
and is unique because c};, (n) is decreasing in n while ¢, is increasing in n. The unique entry equilibrium for
segment m is then given by the set of n}, sellers with the smallest marginal costs c;, with the associated cost
threshold given by ¢, (n},). Note any other configuration would include at least one higher-cost seller who would

not be profitable or exclude a lower-cost seller who would find it profitable to enter. [

D Simulating Seller Market Entry and Sales

In this section we describe the full forward simulation of the estimated model. This is used in the counterfactual

analyses and also in evaluating solutions generated by the MMIO estimator.

D.1 Solving Sellers’ Entry Game

Here we describe how to compute the equilibrium entry strategy ), for each market segment m given model

parameters («, 3, ¢ ,0°.0" o¢ oF ), which are suppressed hereafter. Under Assumption 2, sellers form profit
contribution beliefs by taking expectations over demand D, quantity @, and bag values V;. We write E[r;(-)]
to denote these contribution expectations. Next, following Definition 1, for a given market segment m, the

strategy profile 4, C {0,1}/7»| is an equilibrium if and only if
E[IL; (¥,,)] := t; - [E[m;(hp,)] — Fm] =0 (8)

for all j € J,,, where E[m;(4),,)] is the expected profit contribution before fixed costs. Following Proposition 1,
the unique equilibrium entry vector 4, that solves (8) can be determined by finding a threshold ¢, such that
E[r;(1,,)] > Fn(0") if and only if ¢; < ¢,. The threshold ¢, can be determined through a straightforward line

search. Algorithm 1 summarizes the steps.

Note that computing the expected sales associated with a set of entrants requires PlatformRating and Price
variables, which are missing data for non-participating retailers. We impute their prices by using the mean
price of all active sellers in the retailer’s same market segment. To impute PlatformRating, we use our sample
of participating sellers to estimate a linear regression of PlatformRating on the variables Log(RatingCount),
CoffeeShopIndicator, StyleIndicator, and GoogleRating, as well as the seller’s latitude and longitude. We simulate
from the fitted regression model by sampling from the residuals to impute PlatformRating for non-participating

retailers. The R? values vary from 0.08 to 0.13.
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ALGORITHM 1: SOLVING SELLERS’ ENTRY GAME

Input: Model parameters (e, 3, i, ¢, 0°, 6", simulated cost shocks (¢, "), segment m.

Output: Equilibrium entry vector v,

1. Compute costs ¢; = 05 + (0°) Tx; + ¢ and F, = 0§ + 0")Tv,, +F
2. Sort sellers by cost: cy S ey S ST
3. Forn=1,2,...,|Tml
a. Set ¢; = 1if ¢; < ¢(,) and ¢; = 0 otherwise.
b. Compute E[m;(2,,)] + EXPECTEDCONTRIBUTION(%),,,).
c. If equilibrium condition (8) holds, let 4, = 4,,,, break loop.
4. Return equilibrium entry profile v,

Subroutine: EXPECTEDCONTRIBUTION(%),,)

1. Compute Dj, = >, Di_ for all j € T (4,,) using demand model (2).

2. For 1 =1,2,...n simulations:
i. For each store j € 7, (v,,) and period 7 € .7 draw inventory (Q;-)" ~ H;(u,¢).
ii. Compute sales (Sj,)" = min{D,, (Q;-)'}.

3. Compute total expected sales

BS1= A — 3 3 Y

=y jregt =1

and expected price

Elp;] = > pi(Ry)
‘jm‘ JETH
for j € T (¥,,)-
4. Compute expected contribution E[r;(4,,)] = (E[p;] — ¢;) - E[S;] for j € T} (2,,)-
5. Return E[m;(v,,)] for j € Tt (4,,).

Notes: The exact value of seller j’s price p;(R;) depends on the pricing policy being simulated. Under uniform
pricing, p; (R;) = p(R;) (as per Section 3.2); under delegated pricing, p;(R;) = pj(R;) (Section 7.2)

D.2 Simulating Inventory and Sales

Once the entry equilibrium 1 is determined, we simulate total sales for each store by generating individual

consumer arrivals and tracking inventory depletion. This is described in Algorithm 2.
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ALGORITHM 2: DEMAND AND INVENTORY SIMULATION

Input: Model parameters (, 3, i, ), entry vector .
Output: Total sales .S; for each seller j € J.

1. Initialize sales S; =0 for all j € J.
2. For each macro-period 7 € 7
a. For each j € J, sample Q;; ~ H;(u,¢). Set starting inventory QJ, = Q.
b. For each granular period t € T
i. Determine available sellers J! = {j € J : ¢; = 1 and Q?T > 0}.
ii. Compute demand D% =37, . A} - s}, for each j € JF.
e . t _ . t t
iii. Realize sales S}, = min{D}_, Q% }.
iv. Update inventory QF' = @t — St .
3. Return total sales Sj = 3", .7 > ¢ 5 S}, forall j € J.

E GMM Estimator for Consumer Arrivals and Choice

E.1 Moment Conditions

We specify three sets of moments for estimation the demand model via GMM. We define ¢ := (a, 8) to compactly
represent the demand-side parameters. Let J denote the set of stores, 7 the set of time intervals (hours), J
the set of days, W the set of weeks, and M the set of market segments. For each store j € 7, hour ¢t € T, and

day T € 7, total demand over all locations ¢ € L is given by:

1 + Zj/Eji er/z(¢7€)

Dl (6,6) =Y X (o)

lel

We define the predicted sales under (¢, &) as S';T(qin ¢€) := min {D!_($,£),Q"}, where Q" represents quantity
available. For our first set of moments, we construct store-level sales moments at different levels of temporal

aggregation. With a slight abuse of notation, define

G}h(‘ﬁ, €)= Sjt-f - §§T(¢7 £) (store-hourly)
G}T(d)) §) = Z Sjt'f - Z S§T(¢a £) (store-daily)
teT teT
Gju(9,€) = Z ZS; - Z Z@A(b, £) (store-weekly)
TETW tET TET tET
G, €)=Y 8= > > 5 (.8 (store-total)
reTteT TreTteT

For our second set of moments, we define segment-level sales by summing over all stores within each segment,
specified at the zip code level in particular. Let J,, C J denote the set of stores in segment m € M. We

construct segment-level moments at different temporal aggregations:

Groir (9, €) = Z s, — Z St (0,8 (segment-hourly)

JE€EITm J€EITm
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77LT Z Z Z Z S’]tq— (¢7 E) (segment—daily)

JETm tET JE€EITm tET
)= Z Z ZS’;T— Z Z ZS’;T(q&,ﬁ) (segment-weekly)
JETm TE T teT JETm TE T teT
G2 (,€) : Z Z Z Z Z Zﬁ;T(gb, &) (segment-total)
JE€ETm TET tET JE€ETm TET tET

The third set of moments are the orthogonality conditions that follow from the exclusion criterion assumed to
be satisfied by the instruments Z% . E [Zj’?m . ,fj] = 0, for each instrument k € {1,2,...,K}. Accordingly, we

Jmo
define

Z Z & (Orthogonality)

meM jeT
We define corresponding sub-vectors:
G%ll(‘b?&) G%11(¢7€)
G 71171171(¢:€) Gl 71171(9:€)
11(9,6) G2 (,€)
1 ) G1(€)
(@)= | (o ®d (g = | Chz@8) () =
Ghi(¢,€) Gh(6.€) 3
Gy (&)
Gi(9,8) G3(¢,€)
Gly.6) | | Ghu(9.8)
Then the full vector of moments is
771(¢7 £)
n(¢’ 5) = n2(¢7 E)
n5(&)

We jointly estimate the parameters (¢, &) by solving the optimization problem

. T
min n(e, &) Wn(e,§),

where W is a positive definite weighting matrix. The GMM estimator was implemented in Python using the
L-BFGS-B optimizer from the scipy.optimize package. To improve convergence and ensure the stability of
the estimates, we imposed box constraints on the parameters and supplied an explicit gradient function to the

optimizer.
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E.2 Instrumental Variables: Locations of Historical Landmarks

In Figure 13, we present the locations of the historical landmarks in Manhattan that are used to construct
the instrumental variables for consumer-seller distances. These landmarks are clustered in Lower Manhattan,
reflecting the historical concentration of the city center, which coincides with areas of higher store density on
the platform. Moreover, these civic buildings were constructed between 1802 and 1933, making them plausibly
exogenous to contemporary demand shocks. Their age and institutional function further support this exogeneity,
as it is unlikely that individuals would combine a visit to a bakery with a trip to a courthouse. We identify

similar civic landmarks to construct instruments for the remaining three US cities.

Concretely, given a set of K historical landmarks, for each seller-consumer pair (j,¢) we construct the instru-
ment ije = |dist(k,?) — dist(k, )|, where dist(k,£) and dist(j,¢) are the landmark-consumer and landmark-
seller Euclidean distances, respectively. The specific form is chosen because we expect landmarks to be lo-
cated close to commercial locations and further from residential locations, making Z J’?e positively correlated with

Distancejy.

We assess the strength of the instruments by estimating a first-stage regression, where Distancej; denotes the
distance between seller j and consumer location ¢. The regression includes the proposed instruments as covariates
and controls for location fixed effects to account for spatial heterogeneity in baseline distances. Specifically, we
estimate

Distancejp = no + T]TZjZ + ¢ + €54,

where Zj;, = (Z}za .. .,Zﬁ )T is the vector of instruments derived from landmark-based distances, 1 is the
corresponding coeflicient vector, 6, captures location fixed effects, and €, is an idiosyncratic error term. Adding
the instruments increases the adjusted R? from 0.07 to 0.78, a substantial improvement (AR? = 0.71) that
indicates strong explanatory power for Distanceje. The joint F-statistic of 3,191 far exceeds the conventional

threshold of 10, confirming that the instruments are highly relevant and not weak in the first stage.
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Figure 13: Locations of Selected Historical Civic Landmarks in Manhattan.
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F Estimating Sellers’ Entry Costs: Method of Moments with Integer
Optimization

This section provides additional details about the integer optimization-based estimation technique for sellers’
entry costs discussed in Section 5.3. Section F.3 presents the reformulation of the general moment optimization
problem (5). Section F.4 outlines the iterative algorithm based on cutting plane methods for solving the resulting

optimization problem. Section F.5 presents numerical comparison between our method and NFXP.

F.1 Generating Candidate Equilibria

We employ a standard implementation of a random forest algorithm to generate candidate equilibria for each
market segment. These candidate equilibria represent a set of plausible strategy profiles based on store char-
acteristics and market conditions. For each segment m € M, the algorithm generates a set of strategy profiles

{l&k € {0,1}19n| . k € K,,}, which are used in the optimization model described below.

To generate these profiles, we train a random forest classifier that predicts store-level entry probabilities us-
ing non-TGTG variables as predictors and observed entry as the outcome. The feature set includes store
attributes—geographic coordinates, store type, style indicator, Google Map rating rating, and count—obtained
or constructed from the Google Places data, along with market segment characteristics, such as median home
value, obtained from American Community Survey data. The model is trained using 100 trees with a maximum
depth of 10 and balanced class weights, based on an 80/20 train—test split. The resulting test accuracy ranges
from 0.81 to 0.93 across the four markets. For each market segment m € M, we then simulate |KC,,| = 400
candidate equilibria by drawing binary vectors of length |7,,| from independent Bernoulli trials based on the
model’s predicted entry probabilities, to capture plausible variations in market participation while keeping the

computation tractable.

F.2 Variable Construction

Next, we outline how cost covariates in the entry model were constructed from raw data.

MedianHomeValue. Median home values are obtained at the census tract level and aggregated to the ZIP code
level. When a ZIP code spans multiple tracts, we take the average of tract-level median home values to construct

the ZIP-level measure.
HoursOpen. Operating intensity is measured by total weekly opening hours, Hours_Open,.

log(RatingCount). To capture the informativeness of reputation while mitigating skewness, we use log(1l +

RatingCount;) from the Google Places dataset. Missing values in rating count are imputed as zeros.

StyleIndicator. This variable is constructed from Google Maps’ editorial summaries. Each summary is converted

into Term Frequency-Inverse Document Frequency (TF-IDF) features that capture key words and short phrases,
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implemented via the TfidfVectorizer module in scikit-learn (Pedregosa et al., 2011). We then apply K-
means clustering with two groups, which separates stores with refined descriptions (e.g., “fine dining,” “boutique,”

bR

“exquisite”) from those with simpler ones (e.g., “casual,” “family-run,” “no-frills”), interpreted as upscale (1) and

non-upscale (0), respectively. Missing entries are replaced with empty strings and treated as non-upscale.

F.3 Integer Optimization Model Formulation

Let ¢; € {0,1} be a binary variable where 1); = 1 if store j enters the market according to the model, and
¥; = 0 otherwise; hence, the vector 1) represents a strategy profile in the entry game. Using the definitions of
E[r;] and F),, the market entry condition (3) implies the following logical constraints on ), where we suppress

the dependence on a, 3, ¢ throughout the section:

E[r;(;0°)] — Fn(6")

IN

ﬁwﬁ
E[mj(1;0°)] — Fn(0") > —TI(1 — 1);).

Here, II represents a sufficiently large constant equal to the maximum possible profit across all stores. Note

that the expected profit depends on both the cost parameters 0 and 6° and the entry decisions of all stores,

.

Let wy, € {0,1} indicate whether profile dﬁvk is selected by the optimization model for some k € IC,,,. We restrict

our attention to the subset of sampled entry strategy profiles by imposing the additional constraints:

"l}j = Z wkq&jka V] € Im, m € Ma

kEXm

and

Z wr =1, Vme M.

kERm

Let N, denote the empirical number of stores entering segment m, and let Nm(e) represent the predicted number
of entrants under 8. Given a set of simulated shocks X and £%, we estimate 6 = (0°, 6") by solving the following

moment optimization problem:

i 2 W= Nl ()
EM

subject to (B(R;) — ¢;) > Emin{D;. (), Qjr}] — Frn <y, Vj € Ty m € M, (9Db)
TET

(ﬁ(R]) - Cj) Z E[mln{D]T(¢)7Q7T}] - Fm > _ﬁ(l - ¢j)7 v] S jm; m < Ma (QC)
TET

Fro=0"+ 0" v, +ef, YmeM, (9d)

¢; =05+ (0°)"x;+¢e5, VjETm meM, (9e)

> ¥ =Nn, YmeM, (9f)

JEITm
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i = Z Wik, Vi € Tmy m €M, (%)

ke
Z wr =1, Vme M, (9h)
kEXm
W; € 0,1}, Vj € Tm, me M, (91)
wr € {0,1}, Vk €K, m € M. (93)

Using the exact expression for E[min{D, (1), Q,-}] within the optimization problem is intractable for two
reasons. First, note D;, is the sum of MNL probabilities over £ consumer locations (cf. (2)), which combined
with the min{} operator makes computing the expectation complex. Second, the discrete decision variables )
enter into demand D;-(¢) by modifying consumers’ choice sets (cf. (1)) within the MNL, which is intractable

to optimize over.

We instead take a sample average approximation. First note we have

Emin{D;-(¢),Q;-}| = E lmin {Djr ( > wmﬁ) 7er}] = > wiEmin{Dr (¥1), Qsr ],

ke ke

where the second equality follows from the linearity of expectation and constraints (9g)—(9h). Second, we

approximate each term using sample average approximation:

N
: - 1 , o
Emin{Dj- (¥x), Qjr}] = & > min {Z Aer + Sjer (Pr)s Q;T)} ;
i=1 teL
where QEZT) are independent inventory samples from the estimated hurdle model and s;¢, (1,@;6) are pre-computed
MNL choice probabilities for candidate profile 1/3k. Combining the two steps above, we define a new function

that is linear in the profile selection variables w:

N
)= 3w (}V_me{z Aer - sjmﬁk),cz;?}) ~ Elmin{D; (¥), Qj-}]-

ke LeLl

Substituting p;-(w) into (9b) and (9c) yields a mixed-integer linear program. The resulting estimation problem
is significantly more computationally tractable and amenable to cutting plane solution techniques, described

next.

F.4 Iterative Generation of Entry Conditions

Here we describe the iterative procedure used to solve the integer optimization problem for estimating sellers’
entry costs. The key challenge in solving the original optimization model is the large number of equilibrium
conditions (9b) and (9c) that must be enforced simultaneously. Our approach addresses this challenge by focusing
only on the most “relevant” equilibrium conditions, which significantly improves computational efficiency while

guaranteeing convergence to optimality. The approach is in the spirit of cutting plane methods for large-scale
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integer optimization models (Geoffrion and Marsten, 1972; Wolsey and Nemhauser, 1999; Wolsey, 2020).

Conceptually, the solution approach iterates between two steps: First, we construct a master problem where
the equilibrium entry conditions (9b) and (9c) are enforced for a small and randomly chosen subset of sellers,
which dramatically reduces the number of constraints in the formulation. We then identify in a subproblem
sellers whose equilibrium conditions are violated by the incumbent solution, and incorporate those conditions
into the master problem. The intuition behind this approach is that focusing exclusively on the constraints that
are necessary for finding the optimal solution significantly improves computational efficiency. Importantly, this
iterative procedure is guaranteed to terminate at a globally optimal solution of the original problem in a finite

number of iterations.!*

For each segment m € M, we maintain a subset of sellers .,’7;{ C Jm for whom equilibrium conditions are

explicitly enforced. The master problem at iteration k is formulated as

k . : N
MP* : S m; |Np — Ny
subject to (B(R;) — ¢;(0)) Y | pjr(w) — Fr <Tth;, Vj € J;F, me M, (10a)
TET
(P(R;) — cj(0) Y pjr(w) = F > ~TI(1 = ¢), Vj€ TS, meM, (10b)
TeT

and (9d) — (9j).

Note that the equilibrium conditions (10a) and (10b) are enforced only for sellers in the subset 7', while all
other constraints apply to all sellers. The linearized expected sales function p;.(w) is used instead of the original

expectation in (9b) and (9c¢).

~k “ “
After solving the master problem to obtain parameter estimates 8 = (GF ok BC’k) and entry decisions * and ¢,

we solve a subproblem for each segment m € M to identify sellers with violated equilibrium conditions.

For each segment m € M, we examine each seller j € J,,, \ J, and compute a violation measure that quantifies
the extent to which the equilibrium entry condition is not satisfied. To keep track of signs correctly, the violation

is calculated differently depending on whether the seller enters the market (&f =1) or not (1/3;“ =0):

= e fo it 1) (B - ) - ) 3 i) . o

TET
We then identify the seller 5 with the maximum violation in segment m:
Jm = argmax {A;}. (12)
i€Tm\Tm

If the maximum violation exceeds a pre-specified tolerance ¢ > 0, we add the corresponding seller to the subset:

Tk« T u{jk}, and re-solve the master problem. The complete procedure is formalized in Algorithm 3.

' Convergence to global optimality follows from the fact that there are finitely many potential constraints (i.e., equilibrium
conditions) to add, and each iteration either adds at least one condition or terminates with a globally optimal solution.
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ALGORITHM 3: METHOD OF MOMENTS WITH INTEGER OPTIMIZATION

Input: Search grid ¥ C R? for o = (oF

iterations kmax-

,0°), number of simulations n, tolerance € > 0, maximum

Output: Parameter estimates 0.

Main steps:
1. For each o € X:
a. For i =1,...,n simulations:
i. Draw cost shocks (g,)" ~ N'(0,0%) and (¢5)" ~ N(0,0°) for all j € Frn, m € M.
ii. Obtain estimate (8)? < ITERATIVEGENERATION((°), (e7')?).
iii. For each m € M, compute equilibrium entrants (¢,,)" under (8)? by solving (8).
iv. Use ALGORITHM 1 to simulate entry K times under (8)?. Let Z be mean error in entrant
count over K simulations.
b. Let 8(c) = argming: Z°.
2. Return 6 = 0(6) where & = argmin, 5, Z(0).

Subroutine: ITERATIVEGENERATION(e¢, e%').
1. Initialize J,} C J,, for each m € M. Set k < 0.
2. While k¥ < kpax:
a. Solve master problem MP* to obtain (8)%, ( ¥)*, ().
b. For each m € M, find j7, using (11)-(12). If Aj. > ¢, add j7, to J,i.
c. If no violations found, break and return @ = (8)*; otherwise set k « k + 1.

In summary, at each iteration, the algorithm first solves the master problem to obtain current parameter estimates
and entry decisions. It then identifies, for each segment, the seller with the most severely violated equilibrium
condition. If any violations above the tolerance level e are found, these sellers are added to the subsets J,/, + and
the process continues. The algorithm terminates when either no violations are found or the maximum number of
iterations is reached. This approach enhances computational efficiency by focusing exclusively on the constraints
necessary for finding the optimal solution, rather than enforcing all equilibrium conditions simultaneously. A

summary is given in Algorithm 3.

F.5 Numerical Comparison with Nested Fixed Point Estimation

We compare the performance of our proposed method with a straightforward implementation of NFXP using
synthetic data. To evaluate scalability, we consider two setups: one that increases the geographic scope of the
market (e.g., more zip code regions), and another that increases model complexity by adding more cost covariates.

Results are presented in Table 12 and visualized in Figure 14.

In Setup 1, we fix the number of cost covariates and vary the number of market segments, where each segment
has 20-80 randomly generated stores. Except for the case with only two segments — where the estimate for oF
is less accurate — the proposed method consistently outperforms NFXP, achieving lower RMSE and RRMSE
with significantly shorter runtimes, particularly as market size increases. In Setup 2, we fix the number of

market segments and vary the number of marginal cost covariates. Again, except for the case with only one
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covariates, the proposed method delivers more accurate estimates than NFXP while requiring less than one-tenth

the computation time. Both setups highlight the accuracy and scalability of our approach.

Orbserved Entry per Segmont

Ohserved Emtry per Segmont

ALGORITHM 4: NESTED FIXED POINT ESTIMATION FOR SELLERS’ COST PARAMETERS

Input: Parameter grid © = {(65,07),...,(0%,0%)}, empirical entry counts { Ny, }me-

S e AF
Output: Parameter estimates 8 = (00, 0 ).

1. Initialize best objective O* < co and estimate 0« 0.
2. For each i = 1,2,...,n, draw shocks (gf,)! ~ N(0,0%) and (£5)" ~ N'(0,0°) for j € T,

m e M.

3. For each candidate parameter (6°,0%) € ©:
a. For each segment m € M and i = 1,2,...,n, solve entry game with ALGORITHM 1 to

obtain equilibrium strategies {(1,)

in
=1

b. Set predicted entrants (N,,)¢ < > iedn (wj*)z foralli=1,2,...,n.
c. Compute current objective O « Y% | S ent [N = (V).

d. If O < O*, update 6 «+ (8°,0%) and O* « O.

4. Return 6.
Figure 14: Observed vs. Predicted Entrants on Synthetic Instances.
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$=10, |6°|=2.

Prodciad Entry por Sopecnl

S=10, |6°|=3.

Predhciod Entry por Sepsecnl

$=10, |6°|=6.

Pradhciad Enmtry per Scpcnl

5=10, |6°|=11.

Notes: S represents the number of market segments, and |@°| denotes the number of coefficients estimated for the
marginal cost covariates, including the intercept. All instances are for 2 fixed cost parameters (|87| = 2).
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Table 12: Performance of MMIO and NFXP Estimators on Synthetic Instances.

Setup 1: Varying Number of Segments

Mean
Number p,  Number Entry Runtime RMSE RMSE RRMSE RRMSE L
|6¢| |6"] ) ) F F Objective
of Segments of Stores Ratio  (min) (69 (67) (69 (67)
Value
MMIO
6 2 120 0.14 3 1.00 183.62 0.33 1.65 1.13
6 2 247 0.15 7 0.33 17.47 0.06 0.21 0.00
10 6 2 476 0.13 89 0.29 16.63 0.10 0.16 1.94
20 6 2 971 0.12 73 0.83 12.31 0.23 0.68 0.00
NFXP
6 2 120 0.14 156 1.51 54.53 0.50 0.49 178.20
6 2 247 0.15 497 1.43 34.35 0.26 0.42 44.60
10 6 2 476 0.13 1342 1.23 46.78 0.42 0.46 231.20
20 6 2 971 0.12 1519 1.56 16.78 0.43 0.93 288.38
Setup 2: Varying Number of Parameters
Mean
Number r,  Number Entry Runtime RMSE RMSE RRMSE RRMSE L
6] 167 . . I i P Objective
of Segments of Stores Ratio  (min) (69 (67) (69 (67)
Value
MMIO
10 2 449 0.12 6 1.74 17.91 0.42 0.31 0.15
10 2 476 0.15 46 0.75 15.27 0.18 0.21 0.28
10 2 476 0.13 89 0.29 16.63 0.10 0.16 1.94
10 11 2 449 0.15 86 0.31 22.36 0.08 0.64 0.43
NFXP
10 2 449 0.12 610 0.75 14.73 0.18 0.26 624.00
10 2 476 0.15 1189 2.16 40.56 0.52 0.55 219.40
10 2 476 0.13 1342 1.23 46.78 0.42 0.46 231.20
10 11 2 449 0.15 1202 1.41 24.18 0.37 0.69 324.60

Notes: (1) |6°| is the number of coefficients to be estimated for the marginal cost covariates, including the intercept;
|07 | is for the fixed cost.

(2) RMSE: Root Mean Square Error.

(3) RRMSE: Relative Root Mean Square Error to normalize for the magnitude of the coefficients. (4) Results are
based on a fixed (¢, o) = (0.05,0.05).
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G Simulating Market Equilibrium Under Price Competition

In section 7.2, we consider a counterfactual where sellers can choose their own prices. Here we derive the
corresponding equilibrium pricing conditions. We assume sellers compete according to Bertrand-Nash pricing
and derive the price equilibrium accordingly, which follows closely from standard treatments in the literature
(e.g., Nevo (2001); Dubé et al. (2002)). This setup assumes that stores ignore their inventory constraints when
setting prices, which is necessarily to preserve tractability of the pricing game. The procedure iterates between
solving the store-level pricing first-order conditions under the MNL demand system and updating the set of

entrants based on profitability. The full procedure is outlined in Algorithm 4.

First, fix the seller strategies ¢ and consider the partial equilibrium in price. Let J* () := {j € J|¢; = 1}
be the corresponding set of entrants, and let J!(¢) C J (1) be the set of entrants with available inventory at
(t,7). Under the MNL specification, the estimated probability that a consumer at location ¢ chooses seller j at
time (¢,7) is

¢ e‘/ﬂi(:@)
Sier (P B) = S S Lyjeqt@uion

JeTEP)
where Vjy(B) is the estimated deterministic component of utility. The aggregate estimated demand for the

entrant j € J 7 (1)) in period 7 is given by

DJT('(/); 7ﬁ ZZSJZT P; /8

LeLteT

where A\, () denotes the total market size for period 7. Summing over 7, the expected profit for seller j is

> (ps—¢;(6%)) Dyr (5., B),

TET
where ¢;(0°) denotes the marginal cost as a function of the estimated cost parameters. Each entrant sets its bag
price p; to maximize its aggregate expected profit over all periods 7. Treating the bag price p; as the decision
variable, the first-order condition for seller j’s profit maximization problem with respect to p; is

aDjT(,l/}; «, ﬂ)
8pj

fZ Dy, (i ,m:Z[DjT(w; B+ (9 — o(6°)

) reg TET
Momentarily suppressing notation and rearranging, the optimal pricing rule for seller j is characterized by

> Dir

TET
pj =¢i — 8D]‘r
2. T,

TET

Using the expression for D, above, its derivative with respect to p; is

ey S

9p;j LeLteT Opj
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Because only the term SB3p; in Vj, depends on p;, from the MNL probabilities above we have

dst,
a; _T = ﬁ?)sz’f‘r(l - 83’@7’)'
J

Thus, for fixed seller strategies v, the market’s (partial) equilibrium prices p*(1) must satisfy

Do A(@)d ) s (w:0)

p;(‘/’) _ cj(BC) _ TET LeL teT for allj c j+(¢) (13)
DoA(@)BsY D s (W B) (1 = b, (4:8))
T€ET LeLteT

Note the expression above describes a fixed point condition because each choice probability s§ ¢+» depends on a
subset of the equilibrium prices p* (). Finally, because the full equilibrium requires that entry be profitable, a
market equilibrium is given by entry decisions and prices (1™, p*(¢0™)) that satisfy

vy =1 { > (W) —¢;(6%) Dir(¢"s 0, 8) 2 meF)} , forall j € Jn, m € M. (14)

TET

We use the following iterative procedure to compute a market equilibrium. Starting with an initial candidate set
of entrants, we compute the price equilibrium using a damped fixed—point iteration on the first-order conditions
(13). This is further refined by a Newton solve of the system (13) (Powell-hybrid via scipy.optimize.root).
Convergence is declared once the mean absolute residual falls below a tolerance €,. Given these prices, we
then update the set of entrants by identifying the sellers for whom entry is profitable under the incumbent
prices and entrants. The process is repeated until no further changes occur in the set of entrants, which implies
satisfaction of (14). Intuitively, the algorithm converges because entry typically reduces incumbents’ profits
while exit increases the remaining sellers’ profits, eventually reaching a stable set of entrants (and associated
prices) that constitutes the market equilibrium. Algorithm 5 formalizes the procedure. In practice, the pricing

equilibrium and entry conditions are solved to within small tolerances to improve numerical stability.

ALGORITHM 5: SIMULATING MARKET EQUILIBRIUM UNDER PRICE COMPETITION

Input: Model parameters (a, 3, p, ¢, 0%, 0%, 0¢, o), number of simulations n.
Output: Simulated entry counts {(N,,)'}7; for all m € M and sales {(S;)"}?_, for all j € J.

1. Fort=1,2,...,n:
a. Draw cost shocks (],)" ~ N'(0,0%) and (£5)" ~ N(0,0¢), and compute (¢;)* and (F,)" for all
j € Tm, m € M.
i. Set k < 0. Initialize %" to a vector of ones.
ii. Solve (13) under %" and obtain prices p*(¢*) .

iii. Compute all seller profits: II; = Yorea (p;(zpk) —(¢j)") Dy- (wk) — (B

update k < k + 1 and return to Step ii.
b. Simulate sales (S;)" under (¢*)" for each store j € J using Algorithm 2.

2. Return simulated entry counts {(N,,)" = > (¥%)"}ie, for all m € M and sales {(S;)"};, for
allj € J.

JETm
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